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Abstract

Recent years have seen the growth of physical crowdsourcing
systems (e.g., Uber; TaskRabbit) that motivate large numbers
of people to provide new and improved physical tasking and
delivery services on-demand. In these systems, opportunis-
tically relying on people to make convenient contributions
may lead to incomplete solutions, while directing people to
do inconvenient tasks requires high incentives. To increase
people’s willingness to participate and reduce the need to in-
centivize participation, we study on-the-go crowdsourcing as
an alternative approach that suggests tasks along people’s ex-
isting routes that are conveniently on their way. We explore
as a first step in this paper the design of task notification poli-
cies that decide when, where, and to whom to suggest tasks.
Situating our work in the context of practical problems such
as package delivery and lost-and-found searches, we con-
ducted controlled experiments that show how small changes
in task notification policy can influence individual participa-
tion and actions in significant ways that in turn affect system
outcomes. We discuss the implications of our findings on the
design of future on-the-go crowdsourcing technologies.

Introduction
Recent years have seen the growth of physical crowdsourc-
ing systems that motivate large numbers of people to provide
new and improved physical tasking and delivery services on-
demand. With a few button clicks, people can connect to
workers who provide rides (Uber, Lyft), deliver groceries or
meals (Instacart, Postmates, DoorDash), complete errands
(TaskRabbit), and walk dogs (Wag). Enabled by network-
connected mobile devices, mobile apps help connect peo-
ple to tasks and lower barriers to participation, and market
algorithms effectively coordinate the provision of physical
resources on-demand. Together, these system components
facilitate transactions and interactions to scale services to
a broader market and worker population in ways that are
transforming entire service sectors.

While physical crowdsourcing systems may change who
can participate and what tasks can be done, applications are
still limited by the fact that contributions are gathered via
one of two approaches: opportunistic or directed. Oppor-
tunistic approaches rely on contributions from workers in
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situations where the workers themselves decide when and
where to contribute. While convenient for workers, oppor-
tunistic tasking behaviors can lead to incomplete tasks or
slow task completion (Han et al. 2015; Thebault-Spieker,
Terveen, and Hecht 2015). As a result, commercial physi-
cal crowdsourcing systems mainly use a directed approach
to assign tasks to workers that best address system needs.
However, a directed approach often requires contributions
that are largely outside workers’ existing routines and as a
result strong incentives are required (Thebault-Spieker, Ter-
veen, and Hecht 2015). For example, a directed approach
may lead to the assignment of tasks that require significant
travel and incentives in order to increase workers’ willing-
ness to complete the task (Teodoro et al. 2014).

We study on-the-go crowdsourcing as a hybrid approach
that seeks to bring about the best elements of both oppor-
tunistic and directed approaches. On-the-go crowdsourcing
systems use people’s existing routes to complete physical
tasks that are conveniently on their route, but do so in ways
that also address system needs.

We focus in this paper on understanding the challenges in
designing effective task notification policies that determine
when, where, and to whom to suggest tasks. Unlike directed
approaches that assume workers are insensitive to when and
where task assignments are sent so long as the tasks are gen-
erally nearby, we hypothesize that people contributing on-
the-go may be quite sensitive to exactly when, where, and
how task suggestions are presented. Task notification poli-
cies can thus affect individual participation and actions that
in turn affect global tasking outcomes and can influence the
success of an on-the-go crowdsourcing system.

To better understand such challenges, we design task no-
tification policies to study 1) how slight changes in notifi-
cation radius can affect individual participation and user re-
cruitment, and 2) how slight changes in the timing of noti-
fications can affect individual task actions and system out-
comes. We conducted controlled experiments and the re-
sults show that small changes in task notification policies
can affect individual participation and actions in significant
ways that ultimately affect system outcomes. Specifically,
we found that small changes in the notification radius had
a drastic effect on user recruitment and user participation in
package delivery settings. In addition, we found that small
changes in the timing of notifications had a significant im-
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pact on individual actions, which in turn affected global
search coverage in lost-and-found settings.

This paper makes the following contributions:
• We design and experimentally assess different task noti-

fication policies in order to understand how small policy
changes can significantly affect participation and actions
in ways that influence system outcomes.
• We identify and report on situational factors that affect

on-the-go participation that are not prominent in existing
physical crowdsourcing systems, such as providing little
or no travel detour, limiting the need to walk back, and
assessing the likelihood of a user’s hands availability.
• We discuss the implications of our findings for the de-

sign of on-the-go crowdsourcing systems, and highlight
the need for new design and algorithmic work to advance
this promising new model for physical crowdsourcing.

Related work
Existing physical crowdsourcing systems rely on one of two
approaches for soliciting contributions: directed and oppor-
tunistic. The directed approach routes tasks to workers who
are either nearby or who fit the task request criteria. Many
existing on-demand services use the directed approach to en-
sure task completion and task quality. However, the directed
approach requires high incentive for inconvenient tasks,
such as tasks that are at inconvenient locations (Teodoro
et al. 2014) or that require large travel distances (Thebault-
Spieker, Terveen, and Hecht 2015). Long travel distances not
only deter workers from participating (Teodoro et al. 2014;
Musthag and Ganesan 2013), but also prevent requesters
who cannot afford the associated higher cost for the ser-
vice. The opportunistic approach relies on workers to con-
tribute as they wish, e.g., by browsing and selecting tasks
from a list. Some community-driven systems, such as time-
banking systems which support members of a community
exchanging tasking services, use the opportunistic approach
because it provides workers freedom and convenience to
choose when to complete tasks and what tasks to complete.
Since this relies solely on worker’s task selection behavior,
it often leads to task incompletion (Han et al. 2015) and can
leave requesters whose tasks have not been completed un-
satisfied with the service. On-the-go crowdsourcing seeks
to bring about the best elements of both opportunistic and
directed approaches to permit access to a large number of
people who can contribute through their existing routines in
ways that better achieve system goals.

Prior theoretical work highlights the possibility of coor-
dinating physical crowd work to enable new applications by
effectively leveraging people’s existing routines (Sadilek,
Krumm, and Horvitz 2013; Chen et al. 2014). Sadilek et
al. introduced Crowdphysics and conducted empirical study
with geo-tagged tweets to demonstrate that it may be pos-
sible to coordinate long-distance package delivery by lever-
aging people’s existing routines with minimal diversion and
short wait time (Sadilek, Krumm, and Horvitz 2013). Chen
et al. introduced an approach for optimizing the sequence of
physical tasks to assign to workers so as to minimize travel
detours (Chen et al. 2014). While similarly focused on the

idea of promoting convenient contributions, the methods in
these prior works broadly assume that tasks will be accepted
whenever assigned, which makes them a poor match for on-
the-go crowdsourcing in which helpers may or may not per-
form tasks presented to them. We find through our studies
on task notification policies that how we suggest tasks can
significantly affect system outcomes, and present later in the
paper the need for further technical work to support on-the-
go crowdsourcing systems in practice.

Existing physical crowdsourcing applications that lever-
age people’s existing routines focus primarily on data collec-
tion and rely on the opportunistic approach. One approach is
to attach sensors onto people and objects that travel regular
routes to passively collect sensing data, e.g., on bikes (Eisen-
man et al. 2007), street sweepers (Aoki et al. 2008), and pub-
lic transportation (Aberer et al. 2010). This approach does
not require active user involvement but can only collect data
using machine sensors. Another approach is to opportunisti-
cally collect data from active user. For example, Tiramisu
crowdsources bus information from bus riders to provide
real-time arrival time (Zimmerman et al. 2011), and Twitch
uses smartphone unlocks to collect coarse-grained census
data (Vaish et al. 2014). This approach leverages human sen-
sors, but are limited to the situations and locations in which
people opportunistically contribute data. In contrast, our on-
the-go approach actively suggests tasks to potential contrib-
utors using task notification policies that must balance the
goals of promoting convenient and valuable contributions to
advance individual and system goals.

When delivering tasks to potential helpers, task notifica-
tion policies need not only consider interruptible moments
in which people are more likely to accept notifications (Ho
and Intille 2005; Fischer, Greenhalgh, and Benford 2011)
but also situational factors that can significantly affect one’s
interest in contributing to a task. In this direction, our stud-
ies contribute a set of small but significant factors, or chan-
nel factors (Ross and Nisbett 2011), that affect participation
in on-the-go crowdsourcing systems. Understanding these
factors can help us to more accurately identify situations in
which someone on-the-go may be able to help and be used
to extend models that consider only distance-based measures
for the cost of diversion (Horvitz and Krumm 2012).

Task Notification Policies for On-the-go
Crowdsourcing

We envision on-the-go crowdsourcing systems that suggest
tasks to potential helpers who happen to pass by task lo-
cations. These systems implement task notification policies
that decide when, where, and to whom to suggest tasks in a
way that balances individual convenience with the system’s
needs for timely, accurate, and complete solutions. To make
decisions, a task notification policy may consider input fac-
tors such as a potential helper’s location, their distance to
tasks, their likely future routes, the urgency of tasks, the like-
lihood that others will become available in the near future,
and so on. Based on this input, a policy specifies the condi-
tions under which to notify a potential helper about a task
opportunity. For example, a policy may specify a task radius
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Figure 1: We study two task notification techniques, in-
range and at-location, that differ only in the radius within
which to notify potential helpers of task needs. In this illus-
tration, black and grey colors respectively denote people’s
decision to help or not help when notified.

within which to notify people about tasks, which in turn af-
fects the size and composition of the pool of helpers who
receive notifications. A policy may also specify the precise
timing of notifications, affecting when and where the helper
sees the notification and in turn may influence their decisions
on whether to contribute and which tasks they perform.

We describe below two core challenges in designing task
notification policies with illustrative scenarios drawn from
practical problems such as package delivery and lost-and-
found searches. We introduce and compare a number of no-
tification techniques to help to illustrate these challenges.

Balancing individual disruption and the
quality-of-service
Scaling a physical tasking service with an on-the-go crowd
requires balancing desired qualities of service with the dis-
ruption to individual routines in order to promote efficiency
and ensure long-term community viability. Given a set of
task requests and incomplete knowledge of who might be
willing and able to help, a system must decide whom to sug-
gest tasks to from among the pool of potential helpers who
pass by a task location. Setting an aggressive notification
policy that notifies many potential helpers can quickly iden-
tify those who agree to help but may disrupt numerous others
who cannot help. While this may help satisfy demand right
now, it risks notification blindness over time that will even-
tually reduce the pool of potential helpers. Setting a conser-
vative notification policy that suggests tasks only to those
who are deemed most likely to help may risk recruiting too
few helpers, which can lead to task delays or incomplete
tasks. Over time, this approach risks overburdening the best
helpers and can lead to temporal burnout that causes the best
helpers today to eventually exit the system for good.

Illustrative scenario: Community package delivery To
illustrate the challenges of managing the supply of helpers
and deciding whom to notify of task opportunities, consider
a package delivery scenario where the goal is to leverage
people’s existing travel for picking up packages from a mail
center and delivering them to others who could not pick up
packages on their own. The system allows people to submit
requests for pickup and then notifies potential helpers pass-
ing by to perform the pickup. As potential helpers approach

the mail center, the system must decide which sets of helpers
to notify, for example, based on how likely they are able to
help and on whether deliveries are time critical.

In such a scenario, identifying an effective task notifica-
tion policy is non-trivial. Using an aggressive task notifica-
tion policy allows us to reach people who are able and will-
ing to help, such as someone who was already going to the
package center or someone who wasn’t going to the center
but is willing to help after a notification. However, at the
same time, we are also sending notifications to many peo-
ple who are not able and willing to help right now (e.g. they
don’t currently have physical ability to carry the packages or
they are too far from the package center). If significant dis-
ruption continues, it may lead this group of people to eventu-
ally ignore notifications, and result in their leaving the pool
of likely helpers in the future.

On the other hand, using a conservative task notification
policy reaches people who are already going to or at a pack-
age center. This may lead to higher percentage of pick-ups
since it’s likely to reach people who are able and willing
to help, and would alleviate issues of notifying people who
can’t or don’t want to help right now. However, it also misses
opportunities to notify likely helpers who would have helped
if we notified them, and as a result we may overly rely on
people who often go to package center and cause them to
burn out eventually.

In-range and at-location notification techniques To bet-
ter understand the challenges in setting task notification poli-
cies to balance the goals of reaching willing helpers and
disrupting others, we introduce and compare in-range and
at-location notification techniques to study how notification
radius might affect user recruitment and individual partic-
ipation (see Figure 1). In-range notifications suggest tasks
to potential helpers who pass by regions that are within a
certain range of the task location. At-location notifications
monitor a user’s distance to the task location and only no-
tifies them of a task when they are at the location. As the
notification radius shrinks, we expect to reach fewer poten-
tial helpers but see that those receiving notifications com-
plete a higher percentage of tasks suggested to them. In our
first experiment, we use these two notification techniques in
the context of package delivery to study users’ willingness
to pick up packages and overall user recruitment with regard
to small distance changes.

Promoting contributions where they are most
needed
Another core challenge in setting task notification policies
is deciding when to suggest tasks. We assume that on-the-
go crowdsourcing should minimally disrupt people’s rou-
tines, and not require the attention of potential helpers un-
til a task request is made. The timing of task requests may
affect where helpers complete tasks, which tasks are com-
pleted, and which tasks are skipped. Contributions may be
valued more or less depending on task’s importance and
time-criticality, as well as how many people can complete
the task and are likely to come across it. A task notification
policy risks either (1) sending a notification too early, which
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Figure 2: We study two task notification techniques, early
notification and at-border notification, that differ only in the
timing of when notifications are sent to helpers to alert them
of a task need.

can lead to helpers completing a low-valued task when their
routes would have led them to a nearby higher-valued task;
or (2) passing on an opportunity to send a task or sending a
task too late, which may lead to lost opportunities.

Illustrative scenario: Lost and found searches To illus-
trate the challenges of determining when to suggest tasks to
potential helpers, we consider a lost & found scenario where
the goal is to effectively coordinate the search for lost items
with people who can help look for lost items along their ex-
isting routes. A requester who has lost an item marks the
region(s) where it may have been lost, and the system noti-
fies potential helpers who pass by the marked region. As a
helper walks through a region, the system must decide when
to notify the helper with the goal of steering their attention
toward areas that most require their search efforts.

A general challenge in timing notifications is to avoid
wasting search efforts while at the same time avoiding
missed search opportunities. For example, if we notify
helpers too early before they reach the target search region,
the helpers may search for lost items in an unintended re-
gion and thus their searches will be wasted. If we notify
people right at the beginning of the search region, by the
time they respond to the notification and start looking for
the item, they might have already passed some parts of the
target search region, thereby leaving some areas unsearched.
In either case, individual search efforts affect overall search
coverage, and the timing of notifications thus affect search
coverage globally and the overall efficiency of the system.

Pre-tracking and early notification techniques Many
existing systems rely on geofencing for location-based noti-
fications that trigger notifications anywhere around 100 me-
ters from a centroid of a geo-fence (Rodriguez Garzon and
Deva 2014). We posit that geofencing is inadequate for set-
ting task notification policies because it is limited in its pre-
cision and ability to steer users to start searching at precise
locations. To overcome this, we introduce pretracking as a
general method for precisely notifying helpers in a more
timely manner. Pre-tracking triggers fine-grained GPS mon-
itoring once a potential helper approaches a region of inter-
est. Upon entering the region, it continuously makes deci-
sions based on precise tracking of a helper’s location and

uses this information to time when to deliver tasks.
Using a pre-tracking technique, we design two notifica-

tion techniques, early notification and at-border notification,
to study how the timing of notifications affects individual
actions and global system outcomes. The early notification
technique sends notifications ahead of time, by taking into
account factors such as the helpers’ interaction time with
notifications and their walking rate, so that they might start
a task at the beginning of a target region by the time they
decide to help. The at-border notification technique sends
notifications right at the border of the target region where
the system wants the helper to start performing the task. In
our second experiment, in the context of lost & found, we
study how slight changes in the timing of notifications can
affect where helpers’ searches are made in ways that affect
the value of their individual searches and overall search out-
comes.

Controlled Experiments
As a first step to explore the challenges mentioned in the
previous section, we designed two controlled experiments to
study the challenges in 1) balancing individual participation
and user recruitment, and 2) promoting convenient contribu-
tions that are most valued. We will also discuss on-the-go
situational factors we discovered in the experiments.

Experiment 1: The effect of notification radius on
user recruitment and participation
Methods We conducted a two-week long, within-subjects
experiment for a package delivery scenario in order to un-
derstand 1) how sensitive user recruitment and participation
are to notification radius changes, and 2) situational factors
influence helping behaviors. We measured the number of no-
tifications sent for user recruitment and the task pickup rate
for user participation. We used a within-subject design to
limit the effect that large differences in participant’s routines
could have on our findings; some participants may frequent
task location areas more than others, which could unduly in-
fluence the number of notifications being sent.

For the experiment, we developed a prototype of Libero,
a mobile application that collects package delivery requests
and routes them to potential helpers. In our setting, since
requesters receive package notifications from the package
center through their email, they can either forward the email
to the system or take a screenshot of the email if they want
to request that their package be picked up. First, a helper
receives package pick-up request notifications (Figure 3a)
as they pass by the package center. Next, if the helper de-
cides to pick up the package, she is redirected to “Others’
Requests” where she sees a list of the packages with pack-
age details (Figure 3b). To pick up a package, the helper
selects the package she wants to pickup and, after confirm-
ing the pickup, she is provided with the image of the re-
quester’s package notification email. As this occurs, the re-
quester whose package was just picked up, receives an email
and an in-app notification updating her of the status of her
request, revealing the helper’s name as well as the date and
time of pickup.
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Figure 3: (a) Libero sends notifications to people who pass
by a package center; (b) potential helpers can see the details
of the package.

We used two notification conditions: at-location notifica-
tions that notify users when they enter a task location, and
in-range notifications that notify users when they pass by a
region that is within 100 meters of the task location. To im-
plement at-location notification, we placed a bluetooth low
energy beacon with the broadcasting signal power of 4dB
(which translates into 1-3 meters in distance) and 1200ms as
the interval. To implement in-range notification, we used a
geo-fence with 100 meters as the radius.

We recruited 16 people who had iPhone 5 or above via
flyers and local university mailing lists. The average partic-
ipant age was 25 (SD: 3) with 9 male and 7 female partici-
pants. They were randomly assigned to one notification con-
dition and asked to switch to the other condition after one
week. The order of conditions for each person was counter-
balanced. One participant stopped participating during the
second week of the study due to personal reason, so we ex-
cluded that participant’s data from the quantitative analysis.

In both conditions, when the participants accepted a re-
quest notification they were asked to deliver packages from
a specified pick-up location and take them to a specified
drop-off location. We chose a coffee shop that is close to
the nearest train station from a school building where many
classes take place as a pick-up location, and set up a drop-
off location in a building that is next to the school building.
We chose these two locations as pick-up and drop-off loca-
tions because the participants frequently visit places that are
nearby and as a result they would not have to deviate much
from their travel routine.

An author served as a requester during the experiment.
Since we did not want the package size to affect willingness
to help, we only requested packages that were small enough
to be carried by one hand.

The participants were also asked to rate statements re-
lated to the perceived cost of disruption at two times during
the study: once after the first week and another time after
the second week. We also interviewed participants who de-
livered packages at least once in order to better understand
what were the factors affecting their willingness to pick up.
The study lasted for two weeks and the participants received
a $25 gift card as compensation.

Figure 4: Comparison between at-location and in-range con-
dition in terms of number of notifications sent and task
pickup rate.

Results Our results showed that even the small distance
changes that occurred across our two notification conditions
had a drastic and inverse effect on both user recruitment and
user participation (Figure 4). There were 7 times more op-
portunities presented in the in-range condition than in the
at-location condition, with 84 notifications sent to the partic-
ipants in the in-range condition, while only 12 notifications
were sent in the at-location condition. On average, the par-
ticipants in the in-range condition received 5.6 notifications
(SD: 4.37), while the participants in the at-location received
0.8 notifications (SD: 0.8). A Wilcoxon Signed-Ranks test
shows that there is a significant difference between the two
conditions (Z=3.49, p<0.001).

We saw a significant effect in the reverse direction for
task pickup rate, which was almost 10 times lower in the in-
range notification condition than the at-location condition
with an average of 7.13% (SD: 14.79) task pickup rate in
the in-range condition and the average of 75% (SD: 28.87)
in the at-location condition. Wilcoxon Signed-Ranks test re-
sults show that there is a significant difference between two
condition (Z=3.01, p=0.003).

Although there is a significant difference in task pickup
rate and number of notifications sent, we found that partic-
ipants’ perceived cost of disruption was low in both con-
ditions. The participants’ response on a 5-point likert scale
asking about the perceived cost of disruption had a mean
response of 1.8 (SD: 0.77) for the at-location condition
and 2.33 (SD: 1.11) for the in-range condition (1 indicates
not disruptive at all while 5 indicates very disruptive), and
there was no significant difference between the conditions
(Z=1.29, p=0.2).

While it is limited to our experiment, our results show the
potential for leveraging on-the-go crowds to deliver pack-
ages in which people are willing and able to pick up tasks
when they are suggested at the right time. During the study,
there were 13 packages delivered by 5 different participants.
Three participants delivered packages in both conditions
while 2 participants only delivered in one condition (one in
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at-location, one in in-range). On average, the participants re-
ceived 0.79 notifications (SD:0.56) per day.

Discussion Our exploration with in-range and at-location
notifications showed that small changes in distance for task
notification policy resulted in significant opposing effects
on individual participation and user recruitment. It resulted
in high task pickup rate and low numbers in user recruit-
ment for the at-location condition, while resulting in low
task pickup rate and large numbers in user recruitment for
the in-range condition.

The results highlight the trade-offs of setting task notifi-
cation policies to achieve desired outcomes; they do not to
show that either notifying at-location or in-range is better
than the other. Instead, our results show that small changes
in task notification policies can affect individual participa-
tion in significant ways. It should also be noted that the sig-
nificance of such a shift may vary depending on who the
users are. For example, some people may be less sensitive to
task distance, while others would be more sensitive to it.

As on-the-go crowdsourcing systems designers, we have
to consider the trade-offs in possibly overburdening a small
subset of people who are more likely to help with disrupt-
ing larger crowds who might not be able to help. In either
case, there is a potential risk of losing helpers in the long run
due to burnout or disruptions. Since the cost of disruption
was considered low at the two ends of the distance spectrum
where we were able to find potential helpers, there might
exist a “goldilocks” zone where we can get enough poten-
tial helpers and low enough disruptions to mitigate overbur-
dening or disrupting participants at both the individual and
aggregate levels.

Limitations Due to the small sample size, we used a
within-subject experimental design that may lead to fatigue
and learning bias. Regarding the potential fatigue issue in a
within-in subject design, we saw that two people who helped
in the first week did not help in the second week. There was
one dropout in each of the counterbalanced conditions (i.e.,
one in the in-range, the other in the at-location). For the other
three participants, two people picked up more packages and
one picked up same amount of packages compared to first
week. Based on these empirical results, it appears unlikely
that fatigue was an issue that influenced our results.

We also used the task pick-up rate as a measure for indi-
vidual participation and the number of notifications sent for
user recruitment, which served as an intermediary measure
for system outcomes. In the future, we may conduct a large-
scale, between subject, longitudinal study to explore actual
number of pickups and timeliness of delivery to better mea-
sure individual participation and overall system outcomes,
and we can further assess user attrition rate to gain insight
into possible burnout that is caused by too much disruption.

Unlike other physical tasking services which use mone-
tary incentives, we did not use payment per task as an incen-
tive mechanism since it would be a confounding factor for
understanding how people’s participation varies as its con-
venience (i.e. distance to task locations) varies.

Another potential limitation of this experiment is the sim-
ulated package center, a coffee shop in a region where our

Figure 5: (a) CrowdFound sends notification to people who
pass by possible lost item location; (b) the details of the lost
item are also provided to the helpers.

participants frequent, which might have influenced people’s
willingness to help. Some people reported feeling awkward
about picking up packages and not purchasing a coffee. In
the future, we plan to conduct a field deployment with an
actual college package center in order to eliminate such a
deterrent to participation.

Experiment 2: The effect of notification timing on
most valued contributions
Methods We conducted a two-week long, within-subjects
experiment in order to understand 1) how the particular tim-
ing of a notification can affect an individual’s actions and
the global system outcomes, and 2) to help reveal what the
situational factors that affect an individual’s search behavior.

To facilitate the experiment, we developed a prototype of
CrowdFound, a mobile application where users can post lost
item search requests that then notifies people who pass by
possible lost item locations. A user who lost an item can post
a request by providing a lost item type, a detailed description
of the item, an approximate location where she believes she
lost the item on a map, additional location details, and a pic-
ture of the item if she has one. When a potential helper is in
the vicinity of the tagged location of a lost item, she receives
a notification (Figure 5a) asking if she can help look for the
missing item. Once she clicks the notification, she is shown
the relevant description of the item (Figure 5b). If the user
decides to help, she clicks “I am going to help” and a 30 sec-
ond countdown is shown on the screen. After 30 seconds, a
thank-you message is shown, along with the option to either
select: “I found the item” or “I couldn’t find it”. If the user
clicks “I found the item”, an e-mail is sent to the requester
informing her that her lost item has been found and connect-
ing her to the helper so that she may retrieve her item. For
this experiment, we set the default search time as 30 seconds
and the diameter of the search region as 40 meters.

We used two notification conditions: in the early notifica-
tion condition we notified the users 20 meters in advance of
the target search region, and for the at-border condition we
notified users immediately upon entering to the region. We
chose 20 meters based on a calculation that added the mean
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Figure 6: Distance from where they were supposed to start
searching and where the participants actually searched in
at-border and early notification. Means are shown as dotted
lines and medians as solid lines. The box whiskers indicate
range including outliers.

interaction time (7 seconds) for reading and opening noti-
fications (numbers derived from a pilot study) to the mean
time it takes for people to read the descriptions in the lost
item description view (6 seconds, as derived from a usability
testing). We then multiplied this sum by the average walking
rate (1.4m/s) to set the early notification distance.

We recruited 15 people (8 male and 7 female) who had
iPhone 5 mobile devices or above from undergraduate class
and convenient samples. The participants’ age ranged from
19 to 34 (mean: 23.33, SD: 3.64). They were randomly as-
signed to one condition and then switched to the second con-
dition after one week. The order of conditions for each per-
son was counterbalanced.

One of the authors served as a requester during the exper-
iment, and the participants were asked to find lost items in
both conditions. Each participant received 8 requests from
among 5 different types of items (item types were based on
actual posts on Northwestern University’s lost&found Face-
book group). The items ranged in size, but we tried to avoid
bulky items which might be too obvious to spot. Descrip-
tions of the item locations used similar prepositional phrases
(e.g. somewhere, near, in front of) to those found in common
descriptions posted on the lost&found group.

After the experiment, the participants were asked to rate
statements on a 5-point likert scale about the perceived cost
of disruption. Since we believe that there will be no differ-
ence in terms of the number of notifications sent between the
two conditions and its effect on the perceived cost of disrup-
tion, we only sent out one post-study survey at the conclu-
sion of the experiment. We also performed post-interviews
with participants who searched for lost items and asked them
about the times they helped or didn’t help, how they re-
sponded to the notifications, what were their search strate-
gies, and what features might have helped them to search.

In our analysis, we use distance from the actual search
area to the intended search point as a measure of individ-
ual behavior. We use coverage of the search area as a way

Figure 7: A heatmap shows the relative search distribution in
each condition when participants were heading north in 30
seconds time window. In at-border condition people missed
some of the areas at the beginning of the region, while in
early notification some of the searches were wasted outside
of the intended search region.

to measure system outcomes. Wasted efforts mean that the
searches happened outside of the target search region, and
missed opportunities means that helpers were in the target
search region but did not cover some areas.

Results Our results show that small changes in notification
timing have a significant effect on where individual searches
occurred and they also affect the aggregate area covered by
all participants.

Figure 6 shows the distance from where the participants
started searching to the border of the target search region
where they were supposed to search. The distance was closer
to the desired search border in the early notification condi-
tion than in the at-border notification condition.1 Wilcoxon
test shows that there is a significant difference (Z=3.4,
p<.001) between the at-border (mean: 20.55 meters, SD:
22.70) and the early notification condition (mean: -0.42 me-
ters, SD: 10.18). This indicates that, on average, by the time
the helpers searched in the at-border condition they had al-
ready passed almost half of the desired search region, while
those in the early notification condition started 0.42 meters
before the border of the desired search region.

Locations where the individual helper started searching
also influenced the areas they covered within the region. In
the at-border notification condition the participants missed
some of the desired search areas located near the beginning
of the target area, while in the early notification condition
some people started searching too early and outside of the
desired target region. Figure 7 shows the relative search dis-
tribution surrounding the target search region in each con-
dition when participants were heading on a northerly tra-
jectory. We could not clearly see the difference in the rela-
tive coverage distribution between the conditions when the
participants were heading south, since there were only five
searches in the at-border condition in total and we had to
discard two searches due to GPS inaccuracy.

1We excluded 4 searches in which app open time exceeded 50
seconds from when they received notifications.
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An individual’s on-the-go interaction with the mobile de-
vices also influenced their participation. Most of the peo-
ple would open the app via notifications and read the details
of lost items as they were walking. It took 21.62 seconds
(SD: 15.12) on average from the time the notification was
received to the time the participants started helping, and they
walked an average of 22.41 (SD:18.75) meters. However, a
few participants would stop and read the notifications be-
cause they were afraid that they might miss the region they
were supposed to search and didn’t want to circle back.

Although limited to our experiment, our results show that
it was possible to find lost items with relatively little effort
and little disruption on the part of the on-the-go helpers. At
least six items (out of eight) were found by six different par-
ticipants. It took 15.38 hours (SD: 17.22) on average from
the time the item was posted until it was found. It also took
10.65 hours (SD: 11.31) on average to find an item since the
time the first notification was sent to a helper. The helpers
searched 38 times out of the 68 notifications sent to them,
resulting in a 55.88% task acceptance rate. Also, the mean
rating for the perceived cost of disruption on 5-point lik-
ert scale was 2.4 (SD: 0.91), indicating that the notifications
were not disruptive (1 indicates not disruptive at all while 5
indicates very disruptive).

Discussion Our experiment with early and at-border noti-
fications shows that small changes in the timing of a notifi-
cation can have significant effects on values of individual ac-
tions and overall system outcomes. While early notifications
permitted people to start their search for lost items without
missing areas at the beginning, some of their searches hap-
pened prior to the intended search region. On the other hand,
in the at-border condition, some people missed areas at the
beginning of the region and as a result those areas were never
covered.

Limitations Although in our experiment we only focused
on individual searches within a single small region, in a real
world setting the size of a lost item region may be large and it
will require systems to break down a large search region into
smaller regions to solicit help. In such cases, at a system-
level, we need to reason about helper’s future routes, value
of asking help in a certain region, and coordinate searches
across the regions in order to minimize the wasted efforts
or missed opportunities to accomplish desired system out-
comes. That being said, in the future, we could conduct
a large-scale study with multiple lost item locations and a
larger number of participants.

On-the-go situational factors
We now discuss some of the situational factors that influ-
enced a helper’s willingness to contribute. We identified on-
the-go situational factors such as little or no travel detour,
having to walk back, and the availability of the worker’s
hands that are not prominent in existing physical crowd-
sourcing systems.

Existing regular route, having to walk back, missing the
right moment In lost and found searches, most of the peo-
ple tended to search for items along their current routes and

they mainly covered areas that correspond to those routes,
and they were unwilling to walk back in the opposite di-
rection of their destination. As one participant said: “It just
seemed more natural to look, or not natural, convenient for
me to look in the direction I was already walking especially.
Because it’s usually when I am walking I have a destination
so it doesn’t make much sense to me to turn around and look
in the other way I just came. It makes more sense to make
that sweep when I am already walking that way.”

We found similar results in our package delivery settings.
Participants mentioned that sometimes they missed the noti-
fications or checked the notifications too late and didn’t want
to walk back and pick up packages. One participant said:
“Sometimes I couldn’t feel the notification, and sometimes
I checked the notification after passed the [task location],
then I was like ‘oh well...’ and I kept walking.”

Factors like having to walk back served as a channel factor
for participants, in which situations they were dissuaded to
participate.

Hands Availability One of the main reasons that the
helpers didn’t pick up packages was that they couldn’t carry
the package. One participant mentioned that he had to bring
both his lunchbox and a coffee so he couldn’t deliver the
package. Another participant said: “I did not have hands to
carry [so I didn’t pick up]. Also one time, I had to put a pack-
age in my backpack [to help]...” This finding showed that for
physical tasks such as delivery it is important for systems to
understand whether or not the potential helpers have enough
hands to do the task.

Personal situation, time availability and temporal pref-
erence Participants’ schedules and mood also influenced
their willingness to pick up items. Sometimes they were in
a hurry or they just didn’t feel like doing it. One participant
stated: “It also depends on my schedule and mood. If I have
a meeting with my advisor and get nervous, I wouldn’t pick
up even if I am there. If there is something important or you
are nervous, you don’t care about other things.”

In lost and found searches, the common reason for not
being able to help was the lack of time. Participants were
not willing to help or even pull out their phone to check the
notification when they were rushing to classes or meetings.
One participant said: “Most of the time if I am rushing for
class [and] I know I am already late, so I wouldn’t check my
phone.”

Although it differs individually, people have different time
periods when they are not willing to help for various reasons.
For instance, one participant stated that he never searched
after class during lunch time, because he was hungry and
didn’t feel like helping. Another participant was not willing
to search in the morning because there were many people
heading to classes and work, and he didn’t want to stop and
block the crowds in the busy morning: “I am always rushing
to work in the morning...There are a lot of people walking,
[so] it will be weird if I just stop and look around.”

Being with other people We found that whether or not
participants were alone or with other people influenced their
willingness to help. For some people, being with others mo-
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tivated them to participate together: “This was the time when
I was looking for the gloves...I just looked around like the
same route, but my friend who was more curious and went to
the grass area...He looked around a little bit here and there,
and he gave up...It wasn’t about helping, it was more like a
game that I should find something. It was very amusing to
me, and it was a challenge, and I really wanted find this.”
In contrast, some participants felt it was odd or socially un-
acceptable to search for items when they were with other
people. One participant said: “If I am walking with other
people then I wouldn’t, this is kind of weird.”

Weather conditions Current weather condition influ-
enced not only participants’ willingness to search but also
their search time and search regions. Many participants
didn’t even want to check their phone because it was too cold
on some of the days during the experiment period. Even if
they were willing to help despite the weather condition, peo-
ple’s search behavior changed: “Oh, one time it rained and
this part [lawn area] was really muddy, and I didn’t wanna
go look in there. So I just kept looking on the sidewalk while
I walked, but I didn’t like go search for a minute.”

Discussion We found that situational factors such as time
availability, the timing of the task, weather conditions, and
a convenient physical location were all important situational
factors, and this result is in line with previous findings in mo-
bile crowdsourcing services (Teodoro et al. 2014). We also
found that there are other on-the-go specific factors such as
having to walk back or re-trace one’s prior route, taking a de-
tour that is in the opposite direction of the destination, and
having one’s hands available, are important situational fac-
tors for on-the-go helpers. Extending the work from Horvitz
and Krumm (Horvitz and Krumm 2012), in which distance
was taken into account for calculating the cost of diversion
in opportunistic routing, in on-the-go settings we might ac-
count for individual differences and the situational factors
identified in this study when calculating the cost of diver-
sion and incorporate it into task suggestion decisions.

Design Implications
Our research seeks to broadly realize the vision of lever-
aging people’s planned travel to create previously unavail-
able opportunities for physical crowdsourcing over large ge-
ographic areas (Sadilek, Krumm, and Horvitz 2013). In this
paper we studied the challenges in designing task notifica-
tion policies for on-the-go crowdsourcing systems. From
two controlled experiments in package delivery and lost-
and-found settings, we found that small changes in notifi-
cation radius and timing can have a significant effect on in-
dividual participation and actions that in turn affect global
outcomes. In this section, we discuss the implications of our
findings on the design of future on-the-go crowdsourcing
technologies and applications.

Technical Advancements
Focusing on a general population of people on-the-go nec-
essarily implies that helpers may or may not perform tasks

presented to them at any given moment. Ensuring that sys-
tem goals are achieved thus requires managing the con-
stantly changing levels of availability, attention, and inter-
ests of people on the move. This motivates the need to plan
and execute actions opportunistically based on available
mobility resources (Horvitz, Koch, and Subramani 2007;
Kamar, Horvitz, and Meek 2008), and to make adjustments
over the course of problem solving as partial solutions
are made available (Malone and Crowston 1994). Future
work can fill a void in the existing literature on task plan-
ning and routing (Hinds 2002; Shahaf and Horvitz 2010;
Wooldridge 2001; Grosz and Kraus 1996) by providing
flexible frameworks that will enable on-the-go crowds to
achieve a wide range of tasks and objectives.

Since the precise means for supporting system goals with
an on-the-go crowd is often unknown a priori, coordinating
complex physical behaviors will rely upon dynamic mon-
itoring and flexible utilization of resources. First, we need
models for monitoring and predicting the supply of poten-
tial helpers built not only on our understanding of people’s
mobility routines but also their willingness to take on a
task in a given situation, taking into consideration the costs
of diversion and disruption as well as any channel factors
that affect participation. Second, we need decision-theoretic
frameworks that use such models to optimize and adjust task
notification policies to best support desired individual, com-
munity, and system outcomes.

To balance individual disruption and the quality of ser-
vice, we need a supply management framework for on-the-
go crowdsourcing that can simultaneously reason over peo-
ple, tasks, and time to opportunistically govern who to send
tasks to based on needs and the situation on the ground.
Based on the urgency of tasks and the availability of helpers,
such a framework can help us reason about which tasks
to suggest to whom so as to maintain a healthy pool of
helpers by avoiding unnecessarily disrupting or overburden-
ing helpers, while also being sensitive to system goals to
ensure the timely completion of tasks.

To promote contributions where they are most needed, we
need a hit-or-wait framework that can reason over tasking
opportunities a person can encounter on their route and de-
vise policies that decide whether to hit (i.e. send a task re-
quest) or to wait (i.e. to hold off on a request) for a better
opportunity. Based on the importance of tasks and people’s
likelihood of reaching them and helping, such a framework
can help us make informed decisions about when to suggest
tasks to potential helpers en-route so as to best leverage in-
dividual efforts in ways that advance system goals.

Design Opportunities
On-the-go crowdsourcing can open up new ways for peo-
ple to help others in their communities and neighborhoods.
By surfacing task needs in situations where potential helpers
are likely able and ready to help (e.g., in package pickup),
on-the-go crowdsourcing can facilitate more connections be-
tween helpers and requesters to bring significant benefits
through minimal efforts. By coordinating opportunistic con-
tributions from willing helpers each contributing a small part
to completing a larger task (e.g., in lost-and-found), on-the-
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go crowdsourcing can lower the barrier to participation and
connect requesters to a larger population of helpers. Tapping
into a large crowd of potential helpers and facilitating conve-
nient help should make existing community support systems
more effective and efficient. By scaling the efforts of an en-
gaged community, on-the-go crowdsourcing can also spur
new community-based services designed to help people in
need (e.g., the elderly, people with disabilities, new moms,
etc) that may otherwise be difficult to support.

On-the-go crowdsourcing can also open up new ways
of providing commercial physical tasking services. First,
on-the-go crowdsourcing can enable more flexible ways of
working that fit into workers’ existing routines and mobility.
For example, this can allow a driver to pickup and drop off
a passenger on their way to picking up a child from school.
Second, on-the-go crowdsourcing systems can reduce travel
costs to make affordable services that would otherwise have
been prohibitively expensive to scale. This can enable new
services that, by effectively coordinating convenient contri-
butions from on-the-go workers, can provide a quality of ser-
vice that matches or exceeds existing models but at just a
fraction of the cost.

In order to realize these and other design opportunities,
future work should seek to better understand the motiva-
tions required for people to contribute on-the-go and design
solutions that address practical issues such as establishing
trust. For example, there is a need to better understand how
physical tasks can conveniently fit into people’s routines in
ways that enrich their lives. There is also a need for de-
signs that assure requesters that tasks will be completed well
and on-time, given a service that is supported with an on-
the-go crowd instead of workers who respond on-demand.
We look forward to designing new on-the-go crowdsourcing
systems that build on people’s motivations and that address
such practical challenges in future work.
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