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ABSTRACT

A Situated Conversational Agent (SCA) is an agent that en-
gages in dialog about the context within which it is embed-
ded. An SCA is distinguished from non-situated conversa-
tional agents by an intimate connection of the agent’s dialog
to its embedding context, and by intricate dependencies be-
tween its linguistic and physical actions. Constructing an
SCA that can interact naturally with users while engaged
in collaborative physical tasks requires the agent to inter-
leave decision making under uncertainty, action execution,
and observation while maximizing expected utility over a se-
quence of interactions. These requirements can be fulfilled
by modeling an SCA as a partially observable Markov de-
cision process (POMDP). We show how POMDPs can be
used to formalize and implement psycholinguistic proposals
on how situated dialog participants collaborate in order to
make and ground dialog contributions.
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INTRODUCTION

A Situated Conversational Agent (SCA) is an agent that en-
gages in dialog about the context within which it is embed-
ded. An SCA is distinguished from non-situated conversa-
tional agents by an intimate connection of the agent’s dialog
to its embedding context, and the interleaving of linguistic
with physical actions. The research described in this paper
focuses on situated dialog while engaged in collaborative
physical tasks [5],[6],[9], in which multiple agents interact
with one another in order to collaboratively achieve some
goal with respect to the physical context within which they
are embedded. Collaborative physical tasks, such as fixing a
bicycle [9], building a LegoTMmodel [2], or solving an on-
line jigsaw puzzle [5],[6],[7], can potentially occur in a wide
variety of contexts, either real or virtual.
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For an SCA engaged in a collaborative physical task, the de-
cision about whether to select a linguistic or physical action
is based on a variety of interacting factors. These include the
degree of uncertainty the agent has about the dialog context,
the immediate cost incurred by an action versus its poten-
tial future payoff, as well as the likelihood of success for
the action – factors that are determined in turn by properties
of the available communication media and the nature of the
task itself. All of this information can potentially influence
an SCA’s decision making about which actions to take, and
representing and using this information appropriately is nec-
essary for a situated agent to engage in efficient and natural
dialogs in support of collaborative physical tasks.

Within the field of psycholinguistics, these phenomena have
been most directly addressed by Herb Clark’s grounding the-
ory of dialog [1]. Grounding theory emphasizes the idea that
dialog is a joint activity, in which participants collaborate in
order to add information to their common ground of shared
beliefs. Adding information to the common ground is not
an automatic effect of making an utterance. Rather, when
a speaker initiates a dialog contribution, it is only accepted
as part of the common ground when the addressee provides
evidence of understanding sufficient for current purposes, in
a process known as grounding. According to grounding the-
ory, interlocuters attempt to ground utterances to a degree
sufficient for current purposes, while attempting to minimize
collaborative effort in the process.

Applying these ideas to the modeling and construction of a
conversational agent naturally suggests the use of decision
theory, which marries probability theory with the concept
of utility. The goal of a decision-theoretic agent is to select
an action that maximizes expected utility. Maximizing ex-
pected utility over a sequence of actions is the domain of
partially observable Markov decision processes (POMDPs)
[8]. POMDPs provides a principled basis for modeling an
SCA, where the agent must decide whether or not to exe-
cute a linguistic or physical action. Within a POMDP ap-
proach, both information gathering and physical actions are
subjected to a type of value of information calculation, and
can be weighed against each other when choosing an action
that maximizes expected utility over a particular time hori-
zon.

Our research is closely related to recent work on formulat-
ing spoken dialog systems as POMDPs [12]. We extend
this work by applying POMDPs to situated dialog. Our re-
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Figure 1. The Puzzle Task

search is also closely related to that of [10], who describe a
decision-theoretic multimodal dialog architecture. The main
difference between their work and ours is our adoption of a
POMDP approach, which models sequential decision mak-
ing rather than one-shot decisions. The work of [4] is also
closely related. They describe an implemented dialog sys-
tem where sentential ambiguities are translated into uncer-
tainty about dialog context, and they model dialog agents
that maintain a running estimate of uncertainty. We differ
from this primarily in the adoption of a decision-theoretic
model of planning. Finally, our research is inspired by David
Traum’s original work on computational models of ground-
ing [11], where the idea of using a decision-theoretic ap-
proach to conversational grounding is proposed.

THE PUZZLE TASK

Our data on dialog about collaborative physical tasks come
from a series of experiments performed by Gergle, Kraut
and Fussell [5],[6],[7]. These experiments involved pairs of
subjects working together online to solve a virtual jigsaw
puzzle, such as the one shown in Figure 1. In this task, the
subjects were given the roles of helper and worker. During
each trial the helper had private access to a solved version of
the puzzle, and her task was to provide verbal instructions
to the worker on how to build the puzzle. The worker’s task
was to follow these instructions by selecting from a set of
puzzle pieces and moving them into a workspace arranged in
the goal configuration. In a subset of trials the helper shared
a view of the worker’s workspace. In other trials, the helper
had no view of the worker’s workspace, and their interaction
was restricted to audio communication only.

An analysis of the data obtained from these experiments re-
veals that both communication efficiency and communica-
tive processes show substantial differences across the shared
vs. not-shared condition. Pairs were about a third quicker at
solving puzzles, with fewer words per unit of time, when a
high fidelity view of the workspace was shared, and this dif-
ference was greater when task complexity was higher. The
worker’s efficiency in this respect was affected to a greater
degree than the helper’s. Figure 2 (from [7]) illustrates how
language changes when a shared visual workspace is avail-
able. When the shared visual workspace is available, respon-
sibility for checking the state of the puzzle shifts from the
worker to the helper, there are fewer verbal grounding acts,
fewer words, and fewer turns.

Figure 2. Example Puzzle Task transcripts

Based on these results, and results from similar studies, we
highlight two properties of situated dialog about collabora-
tive physical tasks:

P1 Interchangeability of language and action. In a collabo-
rative physical task, worker actions have the dual role of
communicating information as well as accomplishing task
goals. A shared visual workspace provides both agents
with high fidelity observations about the state of the task,
and the state of the ongoing actions of the participants.
Agents who are aware their actions are being observed
produce fewer explicit reports of their current state of un-
derstanding. Agents that can observe others’ actions pro-
duce fewer explicit requests for grounding feedback [6].

P2 Interleaving of action and language in fine increments.
Situated dialog often consist of short speech increments,
finely timed with others’ actions. The pauses between the
speech increments are precisely timed to correspond with
the Worker’s actions, and these actions can in turn deter-
mine the subsequent course of the dialog [2]. The par-
ticipants work together in order to ground dialog contri-
butions at a fine time-scale, with dialog often consisting
of repeated productions of short sentential fragments, fol-
lowed by verbal or non-verbal responses.

Properties of P1 and P2 can be explained under the ground-
ing theory of dialog, according to which dialog participants
use the most efficient means at their disposal to communi-
cate and ground information, and achieve the task goal of
solving the puzzle. Property P1 indicates that physical ac-
tions affect not only the task state, but also dialog state.
When a dialog participant executes a physical action that
she knows is observable by the other participants, it becomes
unnecessary to verbally describe either the action or the re-
sults of the action. When actions are cheap, reliable, and
reversible, as in the Puzzle Task, it can be more efficient to
indicate understanding by executing a physical act than to
verbally ground a helper’s instruction. Property P2 can be
explained under an analysis in which the helper is minimiz-
ing collaborative effort over a sequence of interactions. The
helper can produce shorter (and less effortful) instructions,
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Figure 3. Dynamic influence diagram of a helper POMDP

because the helper is aware that the worker can provide im-
mediate, cheap, and highly reliable feedback in the form of
a physical action. In the next section we outline how these
intuitive explanations of P1 and P2 can be formalized and
implemented using a POMDP approach to situated dialog.

A POMDP MODEL OF THE PUZZLE TASK

A POMDP is formally defined as a tuple 〈S,A, T ,R,Ω,O〉
where S is a finite set of states of the world, A is a finite set
of actions, T : S × A → Π(S) is the state-transition func-
tion, giving for each world state and agent action a probabil-
ity distribution over world states, R : S × A → R is the re-
ward function giving the expected immediate reward gained
by the agent for taking each action in each state, Ω is a finite
set of observations of the world, and O : S × A → Π(Ω)
is the observation function, giving for each action and re-
sulting state, a probability distribution over possible obser-
vations [8].

After each action, an agent receives an observation about the
world. This observation is only probabilistically related to
the actual state of the world and to the action executed by the
agent. Since a POMDP agent does not have direct access to
the world, it must maintain a running estimate of what state
it is in. This running estimate, the belief state, is updated
after every action and observation, and forms the basis for
what actions will be taken next. A solution to a POMDP is
a policy, which is a function π : b(s) → A, that maps from
belief states to actions. An optimal policy (usually denoted
π∗) is a policy that maximizes expected return over some
time horizon. A variety of techniques exist for finding exact
or approximate optimal policies for POMDPs [8].

A particularly perspicuous way to represent a POMDP is
with a dynamic influence diagram [3]. A dynamic influence
diagram is structured like a dynamic Bayesian network, with
oval chance nodes representing random variables. In addi-
tion to chance nodes however, there are square nodes rep-
resenting agent decisions, and diamond nodes representing
agent rewards. A dynamic influence diagram representing
the helper’s role in the Puzzle Task is shown in Figure 3 (cf.
Figure 1 in [12]).

The diagram in Figure 3 shows the world state (in the dashed
box) factored into three components, 〈St, Sd, Aw〉. These
represent, respectively, the puzzle task state, the dialog state,
and the last action taken by the worker, which may be ei-

ther a task action or a dialog action. The arrows in the di-
agram represent influence: taking just these three variables,
the state of the task influences the state of the dialog, while
the task state and dialog state jointly influence the worker’s
action. In addition to these state variables, there are two ob-
servation variables, 〈OSt

, OAw
〉, representing observations

of the task state and worker action, respectively.

At each time step, the helper receives these observations, and
uses this evidence (along with knowledge of its own previous
action) to update the belief state. An action is chosen based
on this belief state, and a reward ris received. This influence
diagram therefore models the case where there is a shared
visual workspace. For the helper POMDP, the only actions
available are linguistic actions. This is reflected in the in-
fluence diagram, where an arc leads from the helper’s action
node to the dialog state in the next time step. The worker,
on the other hand, can influence both the dialog state and the
task state, since the worker can manipulate the contents of
the workspace.

Given this model of the helper, we can now say more on
how property P2 can be derived, with respect to the identifi-
cation of the next puzzle piece to be added to the workspace.
We start by providing the helper POMDP with a set of re-
ferring expressions for identifying puzzle pieces, of varying
incremental lengths. Longer referring expressions contain
more information, but cost more to execute than shorter re-
ferring expressions. Because the helper can directly observe
the worker’s physical actions, and the resulting changes to
the task state, the resultant belief state mass from these ob-
servations leaves little uncertainty with respect to the dialog
and task states. This reduction in uncertainty leads to higher
expected utilities. The helper POMDP will therefore be led
into making shorter, incremental referring expressions, on
the expectation that visual feedback from the worker will re-
sult in a highly certain estimate of dialog and task state.

The diagram in Figure 4 shows a POMDP for the worker role
in the Puzzle Task. The world state representation is similar
to that of the helper POMDP, but with the action chance vari-
able and corresponding observation replaced by the action of
the helper. Likewise, the decision node now consists of the
worker’s action, and the reward node represents the worker’s
reward. The structure of the influence arcs has also changed,
with the helper’s action influencing only the subsequent dia-
log state (representing the fact that the helper cannot directly
modify the task state), and the worker’s actions influencing
both task state and dialog state.

Given this model of the worker, we can now say more about
how property P1 can be derived, again with respect to the
identification of the next puzzle piece to be added to the
workspace. The worker POMDP can select from a set of
task actions (here, moving a particular puzzle piece into the
workspace) and dialog actions (proposing a description of a
puzzle piece that matches the one the helper specified). As
before, task actions result in a high degree of certainty with
respect to the world state – in particular for this case, the
dialog state. This high degree of certainty leads to higher
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Figure 4. Dynamic influence diagram of a worker POMDP

expected utility, and leads the worker agent to prefer (in this
case) to take a task action rather than a dialog action. In or-
der to make this even more likely, it is possible to apply a
higher cost to executing dialog actions than to task actions.
This is reasonable if we make the assumption that both types
of action require the worker to do the work of identifying a
puzzle piece, but the task action is simpler to execute be-
cause it does not require any further process of planning and
generating an appropriate referring expression.

CONCLUSION AND FUTURE WORK

Situated dialog is distinguished from non-situated dialog by
an intimate connection of the dialog to the embedding con-
text, and by intricate dependencies between linguistic and
physical actions. An analysis of data from the Puzzle task
corpus [5],[6],[7] reveals substantial differences in both com-
munication efficiency and communicative processes when
dialog participants collaborating on a physical task share a
visual workspace. Worker actions substitute for language,
the amount of explicit verbal grounding is reduced, and di-
alog turns often consist of incremental instructions from the
helper interleaved with task actions by the worker. A Sit-
uated Conversational Agent (SCA) that engages in natural
and efficient dialog with a user should be able to duplicate
these properties in an appropriate manner. Partially observ-
able Markov decision processes (POMDPs) provide a nat-
ural means for modeling the properties of situated dialog
highlighted in this paper.

We are currently working on an implementation of the mod-
els described above. One of the main tasks here is to esti-
mate the probabilities in the model. Some of these we can
obtain from the Puzzle Task corpus itself, while others (such
as the dialog model) can be handcrafted using dialog rules
(see [12]). The reward functions also need to be constructed,
in such a manner that the desired behavior manifests itself in
the solved POMDPs. We plan to evaluate the POMDP poli-
cies we obtain against a set of handcrafted policies (again
see [12]) in order to compare their relative performance.

In another planned evaluation, we will construct minimally
different versions of the worker and helper POMDPs that
correspond to the condition in the Puzzle Task experiment
in which the participants do not share a visual workspace.
We are interested in examining how the lack of a shared vi-
sual workspace impacts turn-taking and grounding behaviors
(properties P1 and P2). For example, we would predict that

the helper POMPD will produce longer and more detailed re-
ferring expressions, since cheap and reliable feedback from
the worker is no longer available in the form of visual evi-
dence. If specified properly, this behavior will fall out from
the POMDP models without the need to explicitly program
them to perform this way.
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