

Electrical Engineering and Computer Science Department

Technical Report
NWU-EECS-09-13

May 15, 2009

Pennyworth: A platform for building context-aware
applications for everyday use

Chris Karr & Darren Gergle

Abstract

In this work we describe Pennyworth, a software system that
provides both a reusable context inference engine and an
infrastructure that supports context-aware features across a variety
of heterogeneous applications.

Keywords: human-computer interaction, context-aware computing, context toolkit, context-
sensing, sensor-based interactions

 1

Authors’ note: This technical report describes Pennyworth,
a context-aware platform for building everyday end-user
applications. The design and development of the system
described within has continued and the system has evolved
in terms of platform support, underlying architecture, and
application interfaces. To obtain the most recent
developments and iterations of Pennyworth, please visit

http://www.pennyworthproject.org/

 2

Introduction

Our hero opens the door and steps inside the room. Before he can close the door, the
room has turned on the lamps and drawn the blinds to showcase a spectacular sunrise.
As he finds a comfortable position in the seat behind his workstation in the center of the
room, his computing terminal brings up a list of e-mails that arrived overnight.

The clock-like device to the right of his screen activates and displays a small list of
urgent activities. He notices that he has not yet picked up the dry cleaning for the
weekend’s festivities. He taps the item on the screen and the phone in his pocket chirps to
confirm that it will remind him to retrieve the articles on his way home that evening.

Back on the main screen, he scans the messages received overnight. He is pleased that
there are no outstanding emergencies and he can resume work on the project begun the
day before. As he sits up in his chair and opens the project files, the room draws the
blinds behind him to block the intense glare of the young day. The overhead speakers
begin to quietly play a classic Sinatra tune.

Our hero goes to work…

This small fictional blurb reads like a passage from a Phillip K. Dick or Stephen Baxter science
fiction story. It invites the reader to imagine the protagonist in a futuristic setting that features
advanced technology such as a room that opens the window long enough to display the sunrise
and a clock and phone cooperating to remind him to pick up his dry cleaning.

The tragedy of this anecdote is that it reads like science fiction. Outside of research labs and the
homes of technology billionaires, most of us never experience such an environment. Our devices
remain ignorant of each other and fail to coordinate in any meaningful manner to help us
accomplish our daily objectives. We find ourselves manually selecting our favorite music and
resuming work on a project that often involves hunting for a variety of electronic resources
strewn across a variety of folders and online hosts.

Nothing described in the anecdote should be considered science fiction. The technology to adapt
a room for its inhabitant can be found in commodity home automation products. A modern
desktop computer system includes sufficient technology to activate itself and restore the desktop
to a prior state before the user even touches a keyboard. A device called the Chumby can be the
clock-like device that communicates a task reminder to the mobile phone. Automating a media
program to play activity-appropriate music is a simple exercise in scripting.

So, if all of the technological building blocks are presently available to make our anecdote a
reality, why do we spend our days interacting with primitive systems that demand we adapt to
them instead of the reverse?

The answer is simple: two major components are missing from our systems. The first missing
component is a reusable context-inference engine. This is the technology that allows a system to
infer your situation based upon information that it can collect from the surrounding environment.

 3

The second missing component is infrastructure that supports context-aware features across a
variety of heterogeneous applications.

In the following chapters, we describe Pennyworth, a software system that provides both the
context-inference engine and necessary infrastructure that enables scenarios such as the one
described above. In the next chapter, we discuss the prior efforts that inspired the creation of this
system as well the limitations of those efforts that made creating Pennyworth necessary. Drawing
upon that discussion, in the third chapter, we describe the architecture of the system by
highlighting the successful elements it adopts from previous work as well as design decisions
made to avoid some of the pitfalls that plagued earlier efforts. The fourth chapter describes how
the Pennyworth system can be deployed in practice by illustrating how context-awareness
improves existing applications and highlighting new opportunities for novel work to address the
challenges imposed by context-awareness.

Before we discuss how to create context-aware software using the Pennyworth system, it is
useful to understand why such a system is absent and not already ubiquitous on our existing
systems.

 4

Whither the context-aware applications?

In the introduction, we argue that adaptive context-aware systems are possible today and the
main limitation to their deployment is the lack of reusable general-purpose context-sensing
software and the necessary infrastructure required to coordinate across a variety of software
applications and hardware devices.

We argue that context-aware systems are both useful and desirable because they address a
fundamental flaw inherent in the construction of all software and devices: the idea of a typical
user1.

Since most software users do not create their own programs, they rely upon developers to build,
test, and support the software that they use. Developers do not typically create unique “one-off”
applications for individual users, but instead rely upon some form of aggregate user to guide
their system’s design and implementation. This reliance guarantees that unless an individual
perfectly fits the mold of the developer’s aggregate user, he will have to adapt in order to use the
application in the most effective manner.

The ubiquity of application preferences and user-defined options underscore this problem. The
choices exposed by these interfaces illustrate areas where the designer believes that their
conception of a typical user does not overlap with every other person in the product’s target user
base. Thus in the broadest case, applications that are sufficiently context-aware to infer the local
user’s identity (relying upon mechanisms such as user accounts) can use an identity-
configuration mapping to overcome the limitation that designers cannot create customized
software for each individual user. The user still must configure the software to match his
preferences, but once that configuration is set, a context-aware technology can free its users from
restoring their preferences after another finishes using it.

This may seem like an insignificant point that is irrelevant in the age of multiuser systems where
the system manages the identity-configuration mapping in the background. This does describe
the world that the majority of users currently inhabit. However, experience demonstrates that
identity is not always sufficient and that adding other elements to the identity-configuration
mapping is often necessary.

For example, e-mail applications with built-in notification systems post alerts when new
messages arrive. Since users have different preferences about how they should be notified, the
application designer includes a configuration panel. The options exposed by these panels allow
the user to select whether to use a visual notification (such as a bouncing icon or an unread
message count) or sound effects.

1 Cooper (2004) argues against using a typical user when designing products, instead opting for a
collection of fictional users called personas. While this is a useful tool for making design
decisions, personas exhibit the same problems discussed above as a single monolithic typical
user.

 5

Figure 1: Apple's Mail.app program allows users select a variety of audible and visual notification

options.

If the identity-configuration mapping were sufficient, then these configuration options would
always be sufficient for users to manage their preferences. However, as anyone who has ever
given an important slideshow presentation will attest, mail notification preferences are not only a
function of the user’s identity, but also a function of other factors such as the user’s current
activity (e.g. “giving a presentation” vs. “reading e-mail”) and location (e.g. “home office” vs.
“lecture hall”).

Unless software designers wish to force their users to manually reconfigure their systems each
time a situation like a slideshow presentation occurs, software and devices must move beyond the
identity-configuration mapping and begin using contextual information to provide their users the
best configuration for the current situation. We argue below that robust software that
distinguishes between users’ situation, combined with a pervasive infrastructure for sensing and
disseminating context provides the solution to this problem.

Previous Efforts

In the next chapter, we describe Pennyworth, a context inference engine designed to provide
application developers the necessary tools to begin creating context-aware software. However,
Pennyworth is only a recent addition to a long line of context-inference engines created over the
past decade and a half. Its primary innovations are that it makes the context-sensing mechanisms
visible and malleable by end users and it provides application developers a useful set of tools for
constructing context-aware applications without requiring machine learning and sensing
expertise. This development is the result of a natural progression of systems where the idea of
context morphed from an isolated application-specific notion to a system-wide property to a
socio-technical construct that extended from the circuits of the machine into something
negotiable between software and its user.

Schlit and Theimer (1994) first introduced the term context-aware computing when they
described their location-based application that monitored users’ and objects’ location in physical
space. This early instantiation of a sensor-based context-aware system was limited in that the
context was wholly contained within a single application and not made available to other
programs.

 6

Dey, Abowd, and Wood (1998) overcame this limitation by creating the first reusable context-
aware components in the CityDesk framework. CityDesk allowed applications to share
contextual information in order to expose relevant services as the user worked. For example,
CityDesk would make visible the option to open a web browser when the user highlighted a URL
in another application. Drawing upon their experience using CityDesk, Dey and Abowd created
the Context Toolkit (Salber, Dey & Abowd 1999) as a reusable framework for creating general-
purpose context-aware applications.

The Context Toolkit adopted the idea of reusable components from object-oriented desktop
systems as a model for creating context-aware software. In their approach, applications subscribe
to context widgets, which hide the complexity of the sensing mechanism from the application
programmer. A developer writing a location-based application would subscribe to the location
widget. An application that monitored meeting attendance would subscribe to presence widget.
The Context Toolkit supported higher-level concepts (such as activity) by allowing developers to
write aggregator widgets where developers could write code that interpreted readings from a
collection of other widgets to generate new context information. A location widget combined
with a social proximity widget could determine if the user was attending a meeting or chatting
with coworkers in the hall.

One drawback to the Context Toolkit is that it assumed that the mappings from sensor readings
to application outcomes were unambiguous and that developers would readily recognize and
preemptively encode appropriate behaviors that map incoming sensor data to application
outcomes. Fogarty recognized that this assumption was idealistic and used Munguia Tapia’s
insight that statistical models augmented with sensors could be used to predict higher-level
concepts (Munguia Tapia, Intille & Larson, 2004). Fogarty extended this approach to create
statistical machine learners that classified sensor readings to predict contextual attributes of a
user, such as interruptibility (Fogarty, Hudson & Lai 2004) and activity (Fogarty, Au & Hudson
2006).

Using machine learners as context-interpreters, Fogarty created the Subtle toolkit that added the
learners to the Context Toolkit’s basic architecture (Fogarty & Hudson 2007). Like its
predecessor, Subtle included support for sensors and a means of disseminating context
information to other applications. Furthermore, Subtle made writing context-aware applications
more approachable by applying machine learners to predict higher-level concepts using models
trained by the user. By transforming sensor readings into higher-level concepts, Subtle allowed
developers to create applications without worrying about interpreting individual sensor readings.
Instead, developers created applications that monitored changes in the higher-level concepts
(such as activity or interruptibility) and acted upon that information. By using machine learners
as the interpreters between the sensors and the applications, Subtle eliminated the need for any
direct relationships between the two architectural components.

Unfortunately, Subtle’s architectural innovations have been overshadowed by its lack of
availability, large resource and runtime requirements, and non-existent user interface. While the
system aptly demonstrated how to decouple sensing and inference, it’s lack of focus of practical

 7

considerations (availability, usability & performance) render it unsuitable for widespread
deployment. Pennyworth picks up where Subtle left off by

Mainstream Efforts

Despite the active work in context sensing within the research community, mainstream
developers have been slow to adopt or implement context-aware functionality other than simple
location sensing. The current state of the art of mainstream software more closely resembles
Schilit and Theimer’s fifteen year-old efforts than the more recent research work. Microsoft’s
Sensor and Location Platform for Windows 72 is a notable exception and implements a similar
architecture to the Context Toolkit, but it suffers from the same limitations in that it requires
application developers to directly process low-level sensor information into useful higher-level
concepts. MarcoPolo (Symonds 2006) is another attempt at enabling mainstream context-aware
software, but it requires that users define exhaustive sets of rules to interpret their context instead
of leveraging the computer’s ability to make inferences.

Consequently, there is a significant gap between researchers inventing context-inference
techniques and developers writing software for everyday users. Researchers produce powerful
systems that demonstrate context-inference is possible, but fail to follow through and make their
systems usable in wide deployments. Software developers create practical systems, but these are
crippled by simple and crude approaches used to infer context.

The raison d'être of the Pennyworth system is to bring these two parties together by providing a
robust and usable system that enables users and developers to begin using research-grade context
inference technologies in the activities of everyday life.

2 http://www.microsoft.com/whdc/device/sensors/default.mspx

 8

Bridging the gap: Pennyworth

Fundamentally, the major problems preventing mainstream developers from applying the
insights generated in the research community all have straightforward solutions. The problem of
mainstream developers not adopting research approaches in their own work can be overcome by
embedding that knowledge in a reusable software framework. The lack of sufficient developer
support can be addressed by a toolkit creator actively choosing to make a commitment to
document the system, assist users and developers, and promote the toolkit in order to build a
sustainable community around it. Prompting developers to think beyond location-based services
is best accomplished by making available a variety of novel applications that stimulate
developers to imagine context-aware technologies of their own.

In addition to being a tool for mainstream developers, a context-awareness framework deployed
in a variety of applications “in the wild” provides an ideal proving ground for developing and
testing theories about whether context meaningfully improves interaction between people and
machines, the consequences of specific configurations, and what life is like in a context-aware
information ecology. None of these questions will be answered definitively until research-grade
technology is available to mainstream users.

In this chapter, we describe Pennyworth3, a robust context-inference engine designed for
production use by mainstream developers. Pennyworth features a theoretically informed
architecture and design that embodies the best current understandings as well as addressing
shortcomings in the previous work.

This chapter contains three major sections. The first section provides an overview of the
Pennyworth system from the perspective of the end-user. The next section describes Pennyworth
from the perspective of an application developer who wishes to include context-aware
functionality in their product. The final section describes Pennyworth from a theoretical
perspective addresses issues and themes found in the HCI literature about context-aware
systems.

Pennyworth overview

Pennyworth is a user-space application that uses its sensing capabilities to continuously observe
the local environment surrounding the user’s desktop computer. Pennyworth learns how to
interpret this information by relying upon the user to train it to recognize the user’s activity,
location, and social context.

3 The following sections describe the Pennyworth application as implemented on the Mac OS X
platform. While some differences will exist between the flagship Mac version and ports to other
platforms, the approaches and principles described here will remain consistent across operating
systems and hardware platforms.

 9

Pennyworth runs as a background application, but it exposes a modest user interface that allows
the user to

1. Monitor the inbound sensor readings
2. Track the application’s context inferences.
3. Correct the system as needed.
4. Review the system’s generated context models.
5. Override the system with rules when necessary.
6. Create and install scripts that enable new sensors and application control.
7. Configure which sensors are active and which are disabled.

The most significant difference between Pennyworth and previous systems like the Context
Toolkit (Salber, Dey & Abowd 1999) and Subtle (Fogarty & Hudson 2007) is that Pennyworth
allows end-users to take a more active role in managing the system. The implementation of
Pennyworth takes great pains to be as accessible and transparent to the end-user as possible. The
rationale for this fundamental design principle is described in the theoretical section later in this
chapter.

Figure 2: Pennyworth Architecture

Pennyworth is not intended run in isolation; rather, it communicates the user’s context to a
variety of other applications so that those applications can react in their own specific ways to
changes in the user’s situation. Throughout this chapter, we will use the example of a context-
aware time tracking tool to illustrate how Pennyworth provides context information to other
programs. In this scenario, the user trains Pennyworth to recognize their context and the time
tracking tool simply logs changes in the user’s context for later reflection analysis. (This model
is similar to the approach that traditional financial management software employs to allow users
to track their spending habits.)

To begin using the system, the user must first train the system to distinguish between several
contexts. When a user first launches Pennyworth, the application makes itself visible by adding a
small bell icon in the user’s menu bar. When the user clicks the icon, a menu appears that allows

 10

the user view and control the system in a variety of ways. Using the small footprint of a system
menu bar item as the primary interface to the context inference features allows the user to keep
the system running as long as they are signed into the system.

Figure 3: Pennyworth’s features are accessible from the user’s menu bar

In Figure 3, the currently predicted context is visible from the drop-down menu. In this example,
the system is predicting that the user is alone and writing in a specific laboratory as the current
context.

If any of these predictions are incorrect, the user may invoke a correction interface by selecting
“Correct Current Prediction” from the menu.4 This action summons a small training panel where
the user corrects the system’s predictions. The user may select a context label that has been
previously used or he may elect to input an entirely new label. The system remembers new labels
and suggests them in subsequent training interactions. Using this mechanism, users train the
system using the labels that make the most sense for them – the system does not rely upon an
arbitrary set of labels preselected by the system’s designers. Furthermore, correcting the current
context is a context change, and Pennyworth notifies our hypothetical user’s time tracking
software automatically, so no further interaction is necessary.

Figure 4: Pennyworth's training interface

If the user wishes to monitor the system’s context predictions, he can do so using the menu (as
shown in Figure 3), or the system can display a small panel that updates in real-time with the
system’s current context predictions.

4 To expedite training and minimize interruptions to the user’s workflow, the correction interface
may be invoked using a system hot key (Command-Control-C) as well.

 11

Figure 5: Current contexts predicted by the system. New predictions can also be reported using the

Growl notification system.

This display is small enough that it may be placed in the corner of the desktop for peripheral
monitoring while other activities are underway. Using this panel is helpful when training a fresh
system, as the user can instantly recognize and correct errors in the prediction. As time and
training elapses, the user may choose to hide this display when they feel that the trained model
has become sufficiently accurate for their purposes.

Predictions are generated in real-time using input from a variety of sensors. The user can display
the output of the sensors from the menu bar icon. This display reveals all of the active sensors on
the system and the value that each is currently reporting. This information used by the machine
learners to predict context and is always visible from this interface.

Figure 6: Active sensor readings

The information collected by the sensors is used by C4.5 decision tree learners (Quinlan 1993) to
infer the user’s current context5. The model generated by these learners is also visible to the user.

5 In this thesis, the term sensor may be used interchangeably with the machine learning term
feature. Strictly speaking, Pennyworth’s sensors can and do interpret raw inputs to extract
higher-level concepts. For example, the idle time sensor calculates the elapsed period since the
user last interacted with the computer using an input device (e.g. mouse, keyboard, etc.).
However, it also uses that information to keep a running average that describes the user’s overall
amount of engagement as a fraction between 0 and 1. The idle time measurement is subject to
less interpretation than the activity level measurement, but both results are treated equally as
features within the machine learner. The program uses the term sensor, as it is more congruent
with end-users’ mental models than the term feature.

 12

The decision tree is presented using a nested-set diagram6 and the user may view any of the
generated context models used to infer their situation. In our hypothetical user’s case, the current
active application may be tightly bound to the user’s activity (e.g. Active Application = Word
� Activity = Writing; Active Application = World of Warcraft � Activity = Playing Video
Game). The decision tree can recognize these relationships and build a model accordingly.

Making the decision tree visible allows the user to take a more active role in training and shaping
the learners as well as providing a means of harmonizing the user’s mental model of the system
with the system image and generated context models (Lederer, et al. 2004). If user experiences
difficulty training the system, he may review the model to try and identify troublesome sensors
generating spurious readings (e.g. Current Hour >= 10 � Activity = Writing; Current Hour < 10
� Activity = Web Browsing). If a culprit can be identified, the user may disable it in the system’s
preferences. No prior research system grants users this level of independent control, which is
extremely helpful in configuring sensors and learners that are most effective for in a given
setting.

Figure 7: A context model that predicts location as a function of the local wireless network. In this
case, the predicted location changes when the user’s IP address changes. When no address is

available, the system uses the active application to choose the predicted location.

While disabling problem sensors is an effective tool in training the system, there are troublesome
contexts that a model will never be able to learn using Pennyworth’s real-time training interface.7

6 Nested set diagrams are useful for making the context models visible and understandable, but
user feedback suggests that they are not sufficiently clear to the novice user. Future iterations of
Pennyworth will explore using other techniques (such as flowcharts) to better represent this
information.
7 An additional interface that preserved sensor readings and asked the user to provide post hoc
labels may be able to predict some of these troublesome concepts, but would likely produce more
erroneous labels as users were forced to self-report their context at the recorded time. Such an

 13

For example, an “Away” context is one where the user is away from the system. Since training
the learners requires an active interaction between the user and the system, learning “Away” is
impossible, as the user must be present to provide that label. To address this kind of problem,
Pennyworth implements a rules system (not unlike that found in MarcoPolo) that wraps the
context model. Using the rules system, the user can define “Away” as a state that satisfies a
particular set of sensor conditions. The user may define an entire collection of rules that the
system uses to infer context before resorting to the machine learners.

No previous context-inference systems combine both machine learners and a rule system to
create a single context model. This combination allows the system to take advantage of both
approaches: the machine provides superhuman attention to detail and the ability to detect novel
patterns, while the users distill their own knowledge into rules. Rules allow users to specify
significant relationships between sensors and contexts that may be difficult to impossible for the
machine learners to discover on their own, while the machine learners free users from the need to
exhaustively specify every rule that relates sensor readings to context.

Figure 8: Rules are compound Boolean expressions that evaluate sensor readings to infer context.

The user has a tremendous amount of access and control over Pennyworth’s context inference
features. However, errors will occur in training and corrective action may be required. In the
simple case where a user incorrectly inputs their context, the system provides a simple
mechanism where the user can undo the last correction (as seen in Figure 2). However, deeper
corrections may be required and the user may “edit” the learners by renaming, merging, or
deleting labels provided in the system.

Figure 9: Labels may be corrected within the preferences.

interface is a future option if both the real-time machine learner and user-defined rules are
insufficient to predict users’ context, but does not appear to be necessary at the time of writing.

 14

If the user experiences problems training the system to recognize a specific context, he can
selectively “reboot” a learner by deleting the problem label and beginning fresh with a new set of
enabled sensors and fresh training instances. Renaming labels allows the user to update
descriptions of their context in addition to providing a mechanism for merging labels. For
example, if the user began training the system to recognize the difference between “Writing a
proposal” and “Writing a letter”, and the distinction between the two ceases to be useful, he may
rename both to “Writing” without retraining the system to recognize the new label.

While manipulating labels allows the user to fix minor problems, there may be instances when
the learner must be completely reset and the training begun anew. For example, our hypothetical
user may experience a career change, and the model trained to distinguish between activities in
the old job may not work as well as a fresh model trained with information from the new job.
The system provides a convenient “reset” button for these cases.

Anecdotally, Pennyworth can generate useful context models with as few as fifty or sixty
training examples. Since the system generates new models within seconds of receiving training
labels8, the user can abandon previously learned models, retain the system, and resume using it
productively in a period as short as a couple of hours.

Enabling context-aware applications

The discussion thus far covered how users interact with the Pennyworth system to provide it
meaningful labels and to train the system to infer their context from those labels and continuous
sensor readings. However, the utility of a system that only infers context is extremely limited.
Pennyworth provides a variety of mechanisms to translate its inferences into meaningful action.

Previous systems approached this problem by taking a “library” view of the world. That is,
designers of these systems assumed that other application developers would link their program to
their context inference engines to provide context-awareness features within the target
application. Pennyworth functions more as a system service that target applications consult for
context information. By taking a service-oriented approach, new applications can use the context
models that were trained for other applications without requiring the user to train every new
application that they add to their system.

Despite its advantages, even the service-oriented approach will be inadequate for all but the most
trivial circumstances. The service-oriented approach still assumes that the third party developer
is aware of Pennyworth and programs accordingly. Unfortunately, until context-inference
engines achieve a critical mass of adoption that attracts the attention of application developers,
the engines will continue to be ignored and no compatible software will be released.

8 The C4.5 decision tree algorithm is sufficiently efficient and can generate context models in a
few seconds or less with as many as sixty training examples. The current implementation of the
algorithm runs in approximately O(n log(n)) time. As the number of training examples increase,
model generation time increases as well. However, with as many as 100 training examples,
Pennyworth generates 3 context models in less than a minute.

 15

Pennyworth avoids this chicken-and-egg problem by including the ability to take action on its
own using the host system’s native scripting architecture. Rather than rely upon developers to
make compatible applications, Pennyworth empowers users to independently endow other
applications with context-awareness. From the system’s menu bar item, users can invoke the
script manager interface to download and install new action scripts or write their own.

In the case of our hypothetical user, he may have a preferred time tracking tool that he wishes to
make context-aware. If the existing time tracker exposes a generic scripting interface, he can
craft a script that bridges Pennyworth and the preexisting software.

Figure 10: The script manager allows users to use context to automate their own applications.

Pennyworth executes each of these scripts each time the user’s context changes. Scripts are
designed to be small and easily understood by end users. For example, this script sets the current
activity in the user’s time tracking tool:

on prediction(type, prediction)
 -- type is the kind of context: “Activity”, “Location”, “Social
 -- “Context”
 -- prediction is the value: “Writing”, “Home”, “Alone”
 if (type is equal to "Activity") then
 tell application "Finder"
 repeat with p in (processes whose visible is true and
 name is not "Finder")
 try
 if (name of p is equal to "Generic Time Tracker") then
 tell application " Generic Time Tracker "
 set the current activity to prediction
 end tell
 end if
 end try
 end repeat
 end tell
 end if
end prediction

Similar scripts can be used to change the playing track of a media player, alter file-sharing
settings using location as a guide, or change notification preferences when playing a game.

 16

This mechanism works well on host systems that support a common application-scripting
interface. On the Mac OS X platform, there is an existing expectation of application developers
that they will implement scripting interfaces in their applications. This norm has the side effect
of making hundreds of applications context-ready without any extra involvement from the
original developers. Users decide how they wish for their applications to behave and they write
or adapt scripts to implement those behaviors.

Ideally, the ability for users to make their own applications context-aware will spur adoption of
the Pennyworth system and encourage developers to consider how their applications can
productively apply the user’s context. Developers take the first step to realizing this by simply
making their applications scriptable.

However, as mentioned above, Pennyworth is a service that provides context inferences to other
applications. Pennyworth implements this service as using the Observer design pattern (Gamma,
et al. 1994). Applications subscribe to the Pennyworth service and the system broadcasts context
updates asynchronously as they become available.

On the Mac, this mechanism is implemented using the system’s notification center. Applications
subscribe to context updates using the following method:

[[NSDistributedNotificationCenter defaultCenter]
 addObserver:self
 selector:@selector(update:)
 name:PREDICTION_FETCHED
 object:nil];

When new context information is available, the “update:” method will be called:

- (void) update:(NSNotification *) theNote
{
 NSDictionary * userInfo = [theNote userInfo];
 NSString * key = [userInfo valueForKey:KEY];
 NSString * prediction = [userInfo valueForKey:PREDICTION];

 // Do something useful with the context prediction
}

In this block of code, developers implement the desired context-specific behavior. Using this
mechanism, our hypothetical time tracker developer can make the bridging script described
above obsolete by crafting his application to listen for context change notifications from
Pennyworth.

If developers wish to have their own applications serve as sensors for Pennyworth, they can
submit new information using Pennyworth’s own scripting interface or broadcast updates in their
own code. The following example shows how our hypothetical time tracker could contribute the
current project selected as a sensor value:

NSMutableDictionary * note = [NSMutableDictionary dictionary];
[note setValue:@"Current Project" forKey:COCOA_SENSOR];
[note setValue:project.name forKey:COCOA_OBSERVATION_VALUE];

 17

[note setValue:[NSNumber numberWithInteger:15]
 forKey:COCOA_OBSERVATION_DURATION];
 [[NSDistributedNotificationCenter defaultCenter]
 postNotificationName:COCOA_OBSERVATION object:@"Time Tracker"
 userInfo:note];

Pennyworth receives these broadcasts and integrates the readings into the learner framework as if
the information had originated from an internal sensor. In this way, other applications can
expand the set of available options that Pennyworth uses to “perceive” the surrounding
environment.

Theoretical considerations

The overall design and implementation of Pennyworth is driven by the practical goal of creating
a robust and usable system that implements some of the major approaches found in research
toolkits in a manner that encourages mainstream adoption by end users and third party
developers. However a focus on overcoming practical barriers to widespread adoption does not
preclude anticipating and addressing theoretical concerns. This section further situates
Pennyworth in the context-aware literature and explains how its design and implementation
addresses points advanced by members of the HCI community.

In a discussion of the architecture of the Context Toolkit , Winograd (2001) identifies three
major architectures for context-providing software components: widgets, service infrastructures,
and blackboards. Widgets are the approach used in Abowd and Dey’s system where developers
include software components that directly interact with sensors to achieve context-awareness.
Services decouple the application and the context gathering by defining a standard interface that
applications use to retrieve higher-level information from a centralized context service.
Winograd’s blackboard model mirrors the Observer design pattern (described above), where
applications subscribe to a shared space where context messages are posted.

The widget approach silos the context-aware functionality within a single application. The
service and blackboard models decouple the inference and sensing components from the
application, freeing the developer to focus on how context should be used in his application.
Pennyworth rejects the widget model in favor providing both the service and blackboard
interfaces. The service architecture is implemented using the system’s scripting interface. Any
application on the local system can use this interface to retrieve the current context or any of the
sensor readings:

tell application "Pennyworth"
 set activity to the value of the prediction named "Activity"
 set power to the value of the observation named "Power Status"
 return activity & " - " & power
 -- Returns something like “Writing – Wall”
end tell

Pennyworth implements the blackboard model by using the system’s distributed notification
center (illustrated in the previous section). By exposing two types of interfaces to other

 18

applications, Pennyworth harnesses the strengths of Winograd’s blackboard as well as Hong and
Landay’s (2001) infrastructure approach.

By default9, the applications that may retrieve context information from Pennyworth are those
running on the host system. This is a conscious design decision made to address concerns about
the user’s privacy and control over the contextual information (Ackerman, Darrell & Weitzner
2001). In its current incarnation, Pennyworth focuses on making user’s desktop applications
context-aware. This focus currently limits the extent that the system can be used to share context
among devices in a ubiquitous computing environment.

In their discussion of privacy in relation to context-aware systems, Ackerman and colleagues
identify four privacy requirements imposed by several regulatory regimes:

1. Notice: The individual should have clear notice of the type of information collected, its
use, and an indication of third parties other than the original collector who will have
access to the data.

2. Choice: The ability to choose not to have data collected.
3. Access: The ability for the data subject to see what personal information is held about

him or her, to correct errors, and to delete the information if desired.
4. Security: Reasonable measure taken to secure (both technically and operational) the data

from unauthorized access.

Pennyworth partially fulfills the notice requirement by providing a transparent view into the
information collected and the inferences generated. Pennyworth can restrict access to context
predictions by encrypting context change notifications. Users must provide a password to third
party applications seeking to use for the protected updates10. Pennyworth fulfills the choice
requirement in several ways: the user can decide to not run Pennyworth at all, he can disable
sensors that collect overly sensitive information, and he can choose the level of detail that the
system provides through a strategic choice of context labels. The system’s transparency and user
configuration features meet the access requirements, and Pennyworth relies upon the host system
to secure any information collected from the user. That is, Pennyworth’s data enjoys the same
level of protection as the user’s local e-mail messages, web browsing history, stored passwords,
and other personal information.

Similarly, Bellotti and Edwards (2001) argue that context-aware systems must also support
intelligibility and accountability. These requirements stem from the basic limitation that
machines will never interpret context as well as humans. To address this issue, Bellotti and
Edwards distill their intelligibility and accountability requirements into four major principles:

9 The system may be configured to broadcast context information to applications not residing the
on the current host system. This is currently an experimental feature not discussed in detail in
this thesis.
10 There are currently no similar protection mechanisms in place for information retrieved using
the scripting interface. However, extending the password protection to those interfaces is a
straightforward implementation.

 19

1. Inform the user of current contextual system capabilities and understandings.
2. Provide feedback.
3. Enforce identity and action disclosure particularly with sharing nonpublic (restricted)

information.
4. Provide control (and defer) to the user, over system and other user actions that impact

him, especially in cases of conflict of interest.

Pennyworth fulfills the first requirement by making the sensing and generated models
transparent and understandable. At any time, the user may review the data being collected and
review how inferences are generated from that information. Similarly, the system provides
feedback using those mechanisms as well as the panel that displays the system’s real-time
context predictions.

Pennyworth largely sidesteps the identity and action disclosure requirement by delegating that
responsibility to the applications using context. However it does grant users the ability to limit
which applications receive context information using the password protection mechanism. At
any time, the user may revoke a suspicious application’s context privileges by changing the
password.

Finally, Pennyworth provides control through mechanisms such as the ability to pause the
system, selectively enable specific sensors, override the machine learners using rules, view and
modify action scripts, and manage context labels through the system’s preferences. Furthermore,
the user may correct the system at any time by using a system keyboard shortcut to invoke the
training interface.

The delegation of the identity and action disclosure highlights the point that Pennyworth is only
one component of a larger context-aware platform. In the next chapter, we discuss the other
major component of the platform – applications.

 20

Three context-aware applications

The prior chapter discussed Pennyworth from the perspective of an end-user and application
developer. In real-world deployments, Pennyworth has proven itself as a usable and robust
context inference engine. However, without any applications to apply that context, the system is
little more than a novel tool that explores how a user’s context relates to surrounding
environment.

This chapter describes three applications that use Pennyworth to solve existing problems in real-
world environments.

Context-aware notifications

As our lives become more interconnected and we remain available to others through electronic
means, dealing with interrupts has become an increasingly taxing part of our electronic lives
(Horvitz, Koch, & Apacible, 2004; Iqbal & Bailey, 2006). A context-aware system for managing
notifications (Ho & Intille, 2005) provides a potential solution. They identify eleven factors that
mediate this interaction. Among these factors, activity of the user, utility of the message,
modality of interruption, and social engagement of the user are addressable using a context
inference engine in conjunction with a centralized notification system.

On the Mac platform, Pennyworth can be combined with the open-source Growl system
(Forsythe & Hosey 2008) to create a context-aware notification system. Growl is a centralized
system that runs on the user’s own machine. Applications submit notifications to Growl in order
to alert users about events occurring within the system. Growl then displays these messages
using presentation settings that the user previously selected. Growl allows users to standardize
how interruptions are presented using variety of styles and configurations. Users benefit from
using this system by replacing a myriad of application-specific notification schemes with a single
consistent behavior and interface.

Growl was an ideal candidate for implementing a context-aware notification system because it
enjoys wide adoption among developers and users on the Mac platform. This ubiquity allowed
Pennyworth to improve an existing system already deployed by a significant number of users.
Since Growl already exposes an open scripting interface, making it context-aware is a simple
matter of constructing an action script that maps a predicted context to a specific configuration.
A script that controls when an application may interrupt uses code similar to the following:

on prediction(type, prediction)
 if (type is "Activity") then
 tell application "GrowlHelperApp"
 if (prediction is "Socializing") then
 select style with name "Smoke" for application "Mail"
 else if (prediction is "E-Mail") then
 select style with name "Nano" for application "Mail"
 else
 select style with name "Null" for application "Mail"
 end if

 21

 end tell
 end if
end prediction

In this example, the Smoke style is the most intrusive. The Nano style has a smaller footprint and
unobtrusively slides into the user’s display before sliding out of view a few seconds later. The
Null style is one where notifications do not appear at all.

In this configuration, e-mail notifications are most obtrusive when the user is socializing. The
rationale for this choice may be that the user is not engaged in a high-value activity, so more
noticeable notifications are tolerable. When the user begins reading or writing e-mail,
Pennyworth reconfigures the Growl system to use a less obtrusive style. The rationale behind
this choice may be that since the e-mail application is already open, the need for highly visible
alerts is no longer necessary. However, the user may not be looking at a list of messages, so
some notification may still be useful. The final clause of the script instructs the system to turn off
all mail notifications for other activities. In this case, e-mail notifications may be more of a
nuisance than a benefit, thus are suppressed entirely when not socializing or using e-mail.11

Other users may have other priorities and the mapping between their contexts and notification
preferences will differ from the script above. Pennyworth allows users to define these
preferences using the scripting mechanism without any further involvement needed from the
software’s developer.

Smart homes and environments

There are fewer examples of flashy context-aware applications than the smart home. In this
scenario, the environment monitors its inhabitants and adjusts itself accordingly. For example,
when an inhabitant is present, the software activates devices in the environment. When the
inhabitant leaves, it shuts down the devices to reduce power consumption and wear.

Using an approach similar to that of the notification system, Pennyworth can drive an
environment equipped with computer-addressable devices and other components. A script that
activates a lamp when the user is detected looks like this:

on prediction(type, prediction)
 if (type is "Activity") then
 tell application "Shion" -- Other apps may be used as well
 if (prediction is "Away") then
 deactivate device named "Overhead Light"
 else
 activate device named "Overhead Light"
 end if
 end tell
 end if

11 These rationales are provided simply as an example that one user might use. In other cases,
social activities may be less interruptible than solitary activities. The user may configure the
system to match the rationales that they employ.

 22

end prediction

When the system infers that the user is away, it turns off the overhead lamp. When it infers the
user doing anything else, the light comes on.

The smart environment scenario is almost identical to the notification system, save for one
important detail: the environment itself can become a source of information for Pennyworth.
Using the technique described in the previous chapter where third-party applications broadcast
sensor readings to Pennyworth, a home automation application can contribute the state of the
devices to the context inference engine. If the user listens to a radio while cleaning the local area,
the device’s state may be the crucial clue that lets the system accurately infer the user’s context
when away from the computer. When several key devices are active in a household, the system
may infer that the user is not alone.

Aggregating and sharing group context

The theoretical discussion above about the privacy implications of context-aware software
highlights the default Pennyworth configuration of not sharing any contextual information
beyond the local host system. While this default configuration is intended to protect the privacy
of the user, there may be instances where the user wishes to breach this wall in order to achieve a
greater good.

The group context service that we implemented consists of a centralized web service where
instances of Pennyworth can post each users’ context changes. In this scenario, several users run
Pennyworth on their own computers and the local software uploads context changes to the online
service using an action script.

This configuration may be useful to improve the communications and coordination of a
workgroup. If all members’ context is made available to each other, this may serve as the
electronic equivalent of strolling past someone’s cubicle to unobtrusively assess whether they are
interruptible (Nichols, et al., 2002). In our lab, we have made this information visible in a variety
of ways: Dashboard widgets, mobile phone interfaces, and Chumby widgets.

In the previous chapter, we discussed how Pennyworth sidesteps Bellotti’s identity and action
disclosure requirements by delegating that responsibility to the application using the context. The
group context system is the kind of deployment where this delegation becomes important. In our
testing of the group context system, we use reciprocity and social translucence (Erickson &
Kellogg, 2000) as the governing design principles. In order to gain access to the group context
information, a new member must share their context as well. This sharing allows others in the
group to easily assess who is monitoring their context, as their updates are also visible.

Furthermore, users are encouraged to modify the action script that handles uploads to protect
private information. For example, if a member doesn’t want the context “visiting the doctor”
visible to others, they can update the script to implement whitelists (“upload context when
context is Y or Z”) or blacklists (“upload context unless context is Y or Z”) using simple
combinations of conditional statements. Since the user can craft these scripts to match their

 23

preferences, they can implement the optimal privacy policies that match their situation and
preferences.

Other context-aware applications

These three examples are intended to showcase how Pennyworth enables context-aware
applications in three very different situations. These examples are not intended to define the
scope of applications that can work with Pennyworth. We have omitted discussing a variety of
other applications that work well with Pennyworth (including context aware IM clients, media
players, and security mechanisms) because using context to drive these applications is a
straightforward exercise of the techniques discussed in this chapter.

 24

Conclusion

After a busy day of work, our hero begins to pack up for the day. As he rises from his
chair, the blinds to the outside open, revealing a sunny late afternoon. He looks outside,
satisfied that he’ll finally get around to taking that walk around the neighborhood. As he
looks outside and ponders which route he’ll take, his computer saves the state of his
desktop and locks the workstation. He returns to packing his bag and heads out the door.
As the door closes, the lights in the office dim to off, and the room patiently waits for our
hero to return for another day.

This thesis began by telling a short story and asking why, for the typical user, the story sounded
like science fiction as opposed to something typical and unremarkable. We argue that all of the
building blocks for constructing robust context-aware technologies are available now and the
fundamental problem is the knowledge gap between researchers constructing context-aware
prototypes and the developers who transform ideas into concrete technologies.

We present Pennyworth as a technology that bridges this gap. Its design and implementation
advances the state of the art in research systems by taking a holistic approach to context-aware
architectures that acknowledges the importance of three major classes of stakeholders: end-users,
developers, and researchers. Pennyworth gives end users the mechanisms needed to begin
immediately constructing a context-aware environment using existing software. It grants
developers a flexible and powerful tool set for constructing novel applications that use context in
interesting ways. For the researchers, its implementation addresses a variety of theoretical
concerns that are often ignored by other systems, research and commercial alike.

We demonstrated the practical utility of the system by describing three distinct applications that
each highlights a unique aspect of developing with the system. The context-aware notification
system shows the power of using Pennyworth to actively manage the configuration of another
application on the computer. The discussion of the home automation application built upon the
dynamic configuration by additionally demonstrating how applications themselves contribute
useful information to the learning system. The group context system showed how aggregating
individual users’ context using a web service might improve interactions within a team.

While there are still many technologies that still remain trapped in the pages of pulp magazines
and paperback books, this thesis demonstrates that context-aware technology is not one of them.
The only thing holding back widespread context-enabled technologies is the lack of availability
of robust tools to construct them. Pennyworth solves that problem in a solid and approachable
way.

 25

References

Ackerman, M., Darrell, T., and Weitzner, D. (2001). Privacy in Context. Human-Computer
Interaction, 16(2), pp. 167-176.

Bellotti, V., and Edwards, K. (2001). Intelligibility and Accountability: Human Considerations in
Context-Aware Systems. Human-Computer Interaction, 16(2), pp. 193-212.

Cooper, A. (2004). The Inmates Are Running the Asylum. Sams Publishing.

Dey, A., Abowd, G., and Wood, A. (1998). CyberDesk: a framework for providing self-
integrating context-aware services. In Proceedings of the 3rd International Conference on
Intelligent User Interfaces (IUI '98), pp. 47-54. NY: ACM Press.

Erickson, T. and Kellogg, W. A. (2000). Social translucence: an approach to designing systems
that support social processes. ACM Transactions on Computer-Human Interaction (ToCHI), 7,
pp. 59-83.

Fogarty, J., Au, C., and Hudson, S. (2006). Sensing from the basement: a feasibility study of
unobtrusive and low-cost home activity recognition. In Proceedings of the 19th Annual ACM
Symposium on User Interface Software and Technology (UIST '06), pp. 91-100. NY: ACM
Press.

Fogarty, J. and Hudson, S. (2007). Toolkit support for developing and deploying sensor-based
statistical models of human situations. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI '07), pp. 135-144. NY: ACM Press.

Fogarty, J., Hudson, S., and Lai, J. (2004). Examining the robustness of sensor-based statistical
models of human interruptibility. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI '04), pp. 207-214. NY: ACM Press.

Forsythe, C., and Hosey, P. (2008). Growl. Available online at http://www.growl.info/.

Ho, J., and Intille, S. (2005). Using context-aware computing to reduce the perceived burden of
interruptions from mobile devices. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI '05), pp. 909-918. NY: ACM Press.

Hong, J. and Landay, J. (2001). An Infrastructure Approach to Context-Aware Computing.
Human-Computer Interaction, 16(2), pp. 287-303.

Horvitz, E., Koch, P., and Apacible, J. (2004). BusyBody: creating and fielding personalized
models of the cost of interruption. In Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work (CSCW '04), pp. 507-510. NY: ACM Press.

 26

Iqbal, S. T. and Bailey, B. P. (2006). Leveraging characteristics of task structure to predict the
cost of interruption. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’06), pp. 741-750. NY: ACM Press.

Lederer, S., Hong, I., Dey, K., and Landay, A. (2004). Personal privacy through understanding
and action: five pitfalls for designers. Personal and Ubiquitous Computing, 8(6), pp. 440-454.

Munguia Tapia, E., Intille, S., Larson, K. (2004). Activity recognition in the home setting using
simple and ubiquitous sensors. In Proceedings of PERVASIVE 2004, pp. 158-175.

Nichols, J., Wobbrock, J. O., Gergle, D., and Forlizzi, J. (2002). Mediator and medium: doors as
interruption gateways and aesthetic displays. In Proceedings of the 4th Conference on Designing
interactive Systems: Processes, Practices, Methods, and Techniques (DIS '02), pp. 379-386. NY:
ACM Press.

Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc.

Salber, D., Dey, A., and Abowd, G. (1999). The context toolkit: aiding the development of
context-enabled applications. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI '99), pp. 434-441. NY: ACM Press.

Schilit, B., Theimer, M. (1994). Disseminating active map information to mobile hosts. IEEE
Network, 8(5), pp. 22-32.

Symonds, D., (2006). MarcoPolo: Context-aware computing for Mac OS X. Available online at
http://www.symonds.id.au/marcopolo/ .

Winograd, T. (2001). Architectures for Context. Human-Computer Interaction, 16(2), pp. 401-
441.

