
 

Know what I'm talking about? Dual eye-
tracking in multimodal reference resolution

 

 

Abstract 
Multimodal reference resolution is an important 
component of intelligent user interfaces using natural 
language. We use multimodal context data – including 
dyadic gaze - to develop models to identify reference in 
natural conversation. Our approach uses a mixture of 
rule-based and automatically coded gaze-based, 
linguistic, spatial, and temporal features, and 
conversational conditions. We accurately identify the 
objects speakers were referring to at more than 60%, a 
rate substantially higher than random and majority 
baselines. We also explore the contribution to reference 
resolution of combinations of linguistics, spatial, and 
gaze features  (both speaker and overlapping). 

Keywords 
Dual eye tracking, gaze, reference, multimodal, shared 
visual space 

ACM Classification Keywords 
H.5.3 [Information Interfaces and Presentation]: Group 
and Organization Interfaces – collaborative computing, 
computer-supported cooperative work, computer-
mediated communication 

General Terms 
Human Factors, Experimentation, Measurement, Design 

Copyright is held by the author/owner(s). 

CSCW 2012, February 11-12, 2012, Seattle, Washington, USA. 

Alan T. Clark 
Dept. of Communication Studies 

Northwestern University 

alan-clark@northwestern.edu 

 

Darren Gergle 
Dept. of Communication Studies 

Dept. of Electrical Engineering and 

Computer Science 

Northwestern University 

dgergle@northwestern.edu 

 

 

 



 2 

Introduction 
In this paper we consider how dual eye-tracking 
methods can be used to better understand the role 
gaze plays as a "conversational resource" [14] during 
reference – how people specify the person, object or 
entity that they are talking about [5]. Our work builds 
on a number of studies have begun to explore the 
relationship that exists between gaze and reference. 
For example, conversational partners' shared gaze 
toward referents is higher while they speak about those 
objects [3], addressees make use of the speaker’s gaze 
as a cue for disambiguating references [11], and 
shared gaze toward local referents is reduced when 
speakers have an alternative indicator of attention, 
such as physical movement toward a referent [9]. 

Yet, while these studies demonstrate that reference is a 
multimodal process whereby objects are evoked 
through a conversational partner’s actions, movement, 
gaze, etc., most computational accounts of reference 
focus primarily on spoken language. These models 
largely ignore the potential benefits of collecting and 
modeling features of non-verbal referential context that 
people often rely on in conversation [4,10]. 

Multimodal reference resolution is an increasingly 
important component of intelligent user interfaces using 
natural language. For example, in order for robots or 
virtual agents to interact with humans using speech in 
space, they will need to identify which objects people 
are talking about. In turn, they will need richer 
computational models that can understand the 
ambiguous speech and non-verbal contextual cues 
humans use in everyday conversation. The increasing 
prevalence of speech interfaces in consumer technology 
(e.g. Apple's "Siri"; Xbox 360 Kinect) further signal a 

trend toward reliance on intelligent user interfaces that 
will need to be able to understand naturalistic speech, 
including multimodal reference. Anticipating this, we 
sought to use multimodal input - with a particular focus 
on dyadic gaze data - to develop machine learning (ML) 
models of reference resolution. We generate and 
empirically evaluate a series of models that employ 
gaze features (both individual and dyadic measures), 
spatial features, linguistic features, temporal features, 
and conversational conditions to demonstrate their 
utility in identifying speakers' references. 

Background 
In earlier work [6,9], we identified several important 
aspects of communicative context that contribute to the 
multimodal reference process. Gaze is clearly an 
important conversational resource dyads use in 
multimodal reference. Briefly, conversation partners 
use each others’ gaze to indicate attention to and 
understanding of references to objects in their 
environment [6,9,11]. Gaze overlap also interacts with 
other contextual factors. For example, gaze overlap on 
referents is generally above chance [3], but 
substantially lower than chance when mobile pairs use 
local deictic (pointing) references [9]. The language 
speakers use to refer is also highly sensitive to the 
visual information in the dyad’s common ground 
[10,14]. What the dyad has already said, and have 
recently said, in the conversation affects the type of 
language speakers use. For example, if one referred 
with a highly specified expression like “the red box on 
the left”, one can subsequently use a less specified 
reference like “it” and anticipate that the addressee will 
understand it's a reference to the same object. A dyad’s 
spatial context, including the relative positions of the 
dyad and objects in shared visual space, affects how 
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Category Features 

Gaze 
Features 

Speaker, addressee, 
and overlapping 
gaze on each object 
(12 variables); total 
gaze overlap 

Spatial 
Features 

Speaker & 
addressee position; 
Speaker & 
addressee time 
since last 
movement; Relative 
position; object(s) 
nearest speaker 

Linguistic 
Features 

Referential form; 
Plural; Local; 
Givenness; 
Givenness shift 
(from previous 
reference); Referent 
shift 

General 
Context 

Dyad, speaker, 
condition 

Temporal 
Features 

Onset time; time 
since last reference 

Table 1. Features applied to 
reference resolution ML 

Time 
Elapsed Referring Expression Speaker 

Ref. 
For
m 

Givenness 
Shift 

Gaze 
OverlapA 

Speaker 
Position 

True 
Referent 

6.15 This one? 1 this -- .605 2 A 

16.34 
It's a little Zen you 

know? 
2 it 1 .895 4 A 

21.24 
I sort of see it as a 

face 
1 it 0 .159 2 A 

Figure 1. Sample data with sample subset of feature codes 

 

and when speakers adapt their referring expressions to 
their addressee’s perspective [2,15].           Temporal 
context also affects how dyads refer – for example, 
speakers might use more detailed language and rely 
less on gaze overlap early in a conversation. Finally, 
the conversational conditions of producing a particular 
reference can have idiosyncratic effects models need to 
account for. For example, the proportion of who speaks 
in a dyad varies widely as does the degree to which 
pairs talk about particular objects. We based our 
model’s features on such findings.  

Previous studies have used a variety of computational 
approaches to attempt to identify referential 
ambiguities in natural language [e.g., 8]. However, 
these studies have largely relied on linguistic data and 
do not take advantage of the potential benefits of using 
nonverbal conversational resources that people employ 
in referential communication [11]. Similar approaches 
that take nonverbal context into account exist. For 
example, [4] used visual context in a 3D virtual 
environment to aid in a reference resolution model. 

Study 
For this study we use the corpus collected in [9] drawn 
from a dyadic naturalistic referential elicitation task 
that has associated context data - linguistic features, 
proxemic context, timing, and gaze. Further details on 

the study and methods are found in [6,9].  

Unlike existing NLP approaches to reference resolution, 
we focus on using easily acquired linguistic data that 
also takes a dyad's non-verbal coordination into 
account. We aim to use features which could provide a 
practical baseline for current technology, and we  
sought to test how well a semi-supervised approach 
could identify a speaker's intended referents using five 
types of features - gaze, spatial, linguistic, temporal, 
and general - that could be plausibly extracted from 
natural language without human annotation.  
  
Model Implementation 
We used the Orange data mining suite [8] to 
implement ML models using the feature sets described 
in Table 1. The goal of the learned models was to 
predict the speaker's intended referent for each of 
1,546 referring expressions in our corpus. We include 
sample data from our corpus with a sample of coded 
features in Figure 1. The accuracy of these predictions 
was tested against a human-coded gold standard. 

Gaze Features 
Our models used thirteen gaze features: speaker's and 
addressee's proportion of gaze toward each of four 
referent objects; the dyad's rate of overlapping gaze on 
each of four objects; and the dyad's total rate of gaze 
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Figure 2. Grid for position coding 

overlap across all four potential referent objects. In 
order to make our gaze data more resilient to saccades, 
we aggregated our gaze data into 3 'bins' per second 
containing points of gaze sampled at approximately 
30hz. In these bins, we identified gaze targets only if 
they had a majority share of points of gaze within the 
bin. Each of these gaze statistics was calculated during 
a window of 9 bins (3 seconds) on either side of the 
onset of the referring term (e.g. "this"). So, for 
example, the Speaker Gaze toward Object A feature 
might have a value of .33 if the speaker was looking at 
object A in 6 of 18 bins. Overlap statistics used a 
speaker-based naive initiative calculation - so, for 
example, with a 1-bin offset, the gaze overlap was 
always calculated with the addressee's gaze compared 
with a point .33 seconds behind the speaker's. We used 
a 1-bin offset in all models discussed in the paper. 

Spatial Features 
We developed a spatial coding scheme that identified 
speaker and addressee position relative to each other 
and to referent objects, allowing us to incorporate 
proxemic data such as relative position of speaker and 
addressee [15] and distance from objects [2]. We used 
a top-down "grid" system (Figure 2) that, while not 
highly precise, could be quickly determined using head 
tracking or basic computer vision and an overhead 
camera. Using this coding scheme, we derived seven 
spatial features. We identified the speaker and 
addressee's current position at the time of the referring 
expression, including the addressee's position relative 
to the speaker (side-by-side, across, on the left, or on 
the right). We also noted the time that the speaker and 
addressee had last moved, which we anticipated as a 
potentially useful indicator of referents given the use of 
spatial evocation of referents noted in [9]. Finally, we 

included a feature indicating the object(s) nearest the 
speaker at the time of referring as a potential indicator 
of referent when local deixis was used.  

Linguistic Features 
We purposely avoided approaches such as deep parsing 
in order to make our six linguistic features easy to 
derive and feasible for end-to-end systems. Therefore, 
we employ simple linguistic features based on a 
keyword approach that captures core elements of 
referring expressions of theoretical interest. First, we 
used a simple code of the referential form of a given 
reference - for example, whether the reference was a 
definite description. We used this referential form as a 
keyword to derive other linguistic features using simple 
rules in order to roughly approximate the type of 
automated feature extraction that real interfaces would 
require. We used simple rules to indicate whether the 
reference was singular or plural and also whether it was 
proximal (local) or distal (remote). We also used a 
simple heuristic based on the "Accessibility of 
Referential Form Coding Scheme" in [3] to create a 
feature that indicated the “givenness” of a referent. 
Although this is a relatively simplistic notion of 
givenness [1], we wanted a feature to represent 
speakers' tendency to use less detail as they repeatedly 
referred to the same object. Along similar lines, we 
created a related ‘givenness shift’ feature indicating 
that dyads were going from a more specified to less 
specified reference, or vice versa. In turn, this allowed 
us to create a code for 'reference shifts' – in essence, 
capturing changes from discussion of one referent to 
another. When speakers shift from more specified (“this 
one”) to less specified (“it”) references, it often 
indicates that they are still referring to the same thing. 
Our rule for reference shifts combined the "time of last 
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F-Measure 
 

 Sing. Plur. 

% Refs. 
Correctly 
Resolved 

Naive 
Random 
Baseline 

-- -- 6.67% 

Majority 
Baseline 

(A) 
-- -- 19.34% 

Gaze-Only 
Baseline .613 .093 52.2% 

Gaze & 
Lang. 

Baseline 
.659 .473 60.9% 

Gaze & 
Spa. 

Baseline 
.638 .279 54.4% 

Lang. & 
Spa. 

Baseline 
.256 .439 30.5% 

Full Model .648 .474 60.2% 

Table 2. Machine learning true 
referent prediction performance using 
SVM with 1-bin gaze offset  

reference" temporal feature and the "givenness shift" 
feature: if a reference occurred more than 10s after the 
last referring expression, or occurred within 10s and 
with a more specified form than the previous referring 
expression, we marked it as a reference shift. What 
such rule-based approaches lack in preciseness, they 
make up for with plausibility for real-world applications. 

Temporal Features  
We used two temporal features based on the place of 
each reference in the time course of the conversations. 
Onset time refers to the point in the discourse at which 
the referring expression was spoken (specifically, the 
onset of the referring term like "that"). Time since last 
reference indicates how much time had elapsed since 
the pair last referred to any of the objects.  

Conversational Conditions 
As control variables in our models we made use of 
three simple features that captured the speaker and 
experimental condition in which the reference was 
produced. We identified which dyad and which of 
speaker within that dyad produced each reference. We 
also included the experimental spatial condition that 
captured whether speakers were either seated across a 
table, seated side-by-side, or standing and mobile. 

Machine Learning Approaches 
We tested several ML approaches with a range of 
sophistication and computational intensity. Initial 
attempts revealed particularly poor performance for K-
nearest-neighbor and CN2 approaches, so those were 
not tested further. We continued to test with three 
types of ML approaches - Naive Bayes classifiers (NB), 
Multiclass Support Vector Machines (SVM), and 
Classification Trees (CT). Describing the nuances of 

each approach is beyond the scope of this paper - we 
suggest reading [12,13] for further description. We 
initially tested models using all three approaches, but 
decided to use SVM in all the models reported here as it 
was generally the highest performing plausible 
approach - SVM was able to accurately identify 
referents at a higher rate (up to 10%) than NB or CT 
approaches. For each model, we used 5-fold cross 
validation1 to test the validity of the predictions. This 
approach is commonly used way to provide validity, 
and is not particularly computationally expensive.  

Results 
As a first step, we tested these ML models against each 
other and against baselines with subsets of our 
features. In Table 2, we include in these baselines 
reference resolution using only gaze features (row 3), 
language and gaze (row 4), gaze and spatial features 
(row 5), and language and spatial data (row 6). All of 
our models included the conversational conditions and 
temporal features. For comparison, we also included a 
naive random baseline, which assumes that the model 
would pick from one of the 15 possible combinations of 
referents in our set. Similarly, we included a 
distribution-based majority baseline in which the model 
always guessed the referent (i.e., Object A) appearing 
most often in the corpus. To measure the effectiveness 
of the models, we used F-measure (a combination of 
precision and recall) for both singular and plural 

                                                 
1 Although other approaches (e.g. 10-fold cross validation; 

leave-one-out) are more commonplace, we chose a method 
that would not be too computationally demanding. We also 
note that more intensive validation methods do not necessarily 
yield different results [12]. In our own case, a 10-fold 
validation produced nearly identical results for our full SVM 
model (differences of <.005 f-measure, <.5% accuracy).  
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F-Measure 
 

Sing. Plur. 

% Refs. 
Correctly 
Resolved 

Gaze & 
Spa. (All) .638 .279 54.4% 

Gaze & 
Spa. 

(Standing) 
.684 .458 52.4% 

Gaze & 
Spa. 

(Seated) 
.661 .319 58.1% 

Table 3. ML true reference 
prediction performance with 
branching spatial 

references, as well as the general prediction accuracy 
of the learner in picking the correct speaker's referent. 
We used a strict accuracy measure - if the speaker said 
"these two" talking about objects A and B, but the 
learner predicted objects A and C (or just object B), we 
didn’t consider it a partial match. We discuss the 
performance of our models against reduced-input 
baselines, describe the comparative predictive power of 
speaker gaze vs. gaze overlap, and discuss how the 
model performs in reference resolution in our study’s 
spatial conditions. 

Baseline Performance 
All of the reduced-input models listed in Table 2 
perform well compared to a naive random baseline 
(row 1) and distribution-based majority baseline (row 
2). Models with multimodal input (rows 3-7) proved 
useful for reference resolution, with accuracy 
substantially increased above these baselines. This was 
the case even in models without linguistic features 
included (row 6). This suggests value in our basic 
approach – even without deep parsing, our models 
were able to effectively identify referents more than 
60% of the time. These reduced-input models highlight 
the relative strengths of features for reference 
resolution. Gaze features alone (row 3) were able to 
resolve references correctly in more than half of cases, 
although their accuracy was primarily driven by 
singular references - they performed very poorly in 
predicting plurals. Adding spatial features or linguistic 
features (rows 4 and 5) only marginally improved 
performance on singulars, but drastically improved 
prediction accuracy on plurals. Linguistic features, in 
particular, seemed to provide a major benefit to 
resolving plurals. In all cases, these feature baselines 
performed well above chance or distribution. 

Interestingly, spatial features seemed to have some 
benefit for resolving plurals – adding spatial features to 
a gaze baseline (row 4) improved plural accuracy by 
nearly 20%, but netted only a small marginal gain in 
predicting singulars. Earlier findings indicate that 
speakers use movement toward objects to evoke local 
referents and reduce reliance on gaze coordination [9] 
and that speakers take addressee's relative position to 
speaker and object into account when formulating 
references [15]. We anticipated that this would have 
more of a benefit for singulars. One disadvantage of 
such semi-supervised models is that we don't pre-
assign weights to particular features or situations - 
which may point to some performance benefits of using 
more highly supervised ML approaches or algorithms 
for multimodal reference resolution. However, 
performance benefits may be offset by reduced 
applicability across contexts. 

We also note that the full model (row 7) performed 
slightly worse than the model which had language and 
gaze data but no spatial data (row 5). We suspect this 
may be because the models processed positional data 
from seated conditions and standing conditions without 
considering the relative role of spatial data in each 
context. In future work, we suspect that spatial 
information will be useful if applied more strategically. 
For example, performance might improve if better 
spatial measures (e.g., F-Formations) are used rather 
than the simple spatial features we used.  

Spatial Branching 
We also sought to initially inspect whether handling 
seated and standing dyads differently improved the 
utility of spatial data for reference resolution. The 
results of this are found in Table 3. We found that by 
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F-Measure 

  
Sing

. 
Plur. 

% Refs. 
Correctly 
Resolved 

Lang. & 
Spa. 
Baseline 

.256 .439 30.5% 

Baseline + 
Gaze 
(Speaker) 

.606 .456 56.7% 

Baseline + 
Gaze 
(Overlap) 

.360 .430 37.9% 

Table 4. ML true reference prediction 
performance using speaker vs. 
overlapping gaze 

 

branching into a model for the standing condition (row 
2) and a model for the seated conditions (row 3), we 
were able to slightly improve the combined 
classification accuracy from 56.3% from the 54.4% 
classification accuracy of an un-branched classifier (row 
1). While we again ran into the problem of reducing the 
size of test and training sets (and possibly overfitting), 
we substantially improved performance metrics in 
resolving plurals and slightly improved performance in 
resolving singulars by branching the classifiers.  

Speaker's Gaze vs. Gaze Overlap 
Given previous findings that speaker's gaze is a strong 
cue that addressees use for disambiguating reference 
[11], we wanted to determine how much of the 
importance of gaze in the models was driven by the 
speaker's gaze as opposed to the joint measure of gaze 
overlap. We show these results in table 4. To do this, 
we added either speaker's gaze (row 2) or gaze overlap 
(row 3) to a baseline of language & spatial features 
(row 1). Speaker's gaze seemed to be the major driver 
of the gaze features' contribution, contributing a 
roughly 26% increase in classification accuracy when 
added to a baseline of the other feature sets. By 
comparison, gaze overlap data by itself contributed 
nearly 7.5% accuracy when added to the other 
features. While gaze overlap by itself may be 
insufficient as a predictor, it still proved useful. Finally, 
we note that if one is using speaker's gaze as input 
from a conversation, one is already gathering gaze data 
from both partners and might as well include gaze 
overlap features for their modest performance benefits. 

Discussion 
Given current trajectories of technology development, 
we anticipate that multimodal reference resolution will 

be an important component of the intelligent user 
interfaces. In this work, we took early steps toward 
using dual eye-tracking (and related non-verbal context 
data) as input for multimodal reference resolution. 
Using ML models, we demonstrated the utility of an 
approach that combines gaze-based (including both 
speaker gaze and overlapping gaze), keyword-based 
linguistic, and spatial features to resolve reference in 
naturalistic conversation. Compared to baselines of 7-
19% accuracy, our models were able to predict 
referents with over 60% accuracy, including 
identification of plurals. We anticipate that more highly 
supervised approaches with refined features will 
improve performance even more going forward. 

An additional benefit of our approach is that it relies on 
data that can plausibly be automatically gathered and 
processed without human annotation. For example, as 
described in [9], we've developed a system that uses 
computer vision to automatically identify gaze targets 
and post-process dyadic gaze statistics. Although we 
hand-coded some of our data (e.g. position), our 
models only included features that could plausibly be 
automated given current trajectories of speech-to-text, 
computational linguistics, computer vision, etc.  

In early pilot testing of ML models using hand-coded 
linguistic features rather than rule-based features, our 
reference resolution accuracy was between 5-10% 
better. We note that the keyword-based rules used in 
this study to code plurals, local deixis, reference shifts, 
etc. may not be as accurate and introduce noise into 
the model. If reference resolution in natural language 
interfaces is to use similar ML approaches, it will be 
beneficial to employ more sophisticated NLP to 
automatically code linguistic features accurately. 
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We also note that we didn’t address gesture, a major 
component of other multimodal reference models, from 
our analysis. Gesture's contribution has already been 
established, so we opted to focus on the utility other 
forms of non-verbal coordination as a modular problem. 
However, if gesture were to be used in combination 
with the approaches outlined here, we would expect 
even better multimodal reference resolution 
performance, particularly in identifying plurals. 
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